Report No H4042-14A

DINAH'S HOLLOW, MELBURY ABBAS PHASE 2 GROUND INVESTIGATION

FACTUAL REPORT ON GROUND INVESTIGATION

Carried out for: Dorset County Council

Engineer: Parsons Brinkerhoff

October 2014

Environmental Scientifics Group Unit 15, Crosby Yard, Wildmill, Bridgend CF31 1JZ Tel: +44 (0) 1656 646 588 Email: geo.bridgend@esg.co.uk

DINAH'S HOLLOW, MELBURY ABBAS – PHASE 2 GROUND INVESITGATION

FACTUAL REPORT ON GROUND INVESTIGATION

Report No: H4042-14A Date: October 2014

Employer:

Dorset County Council County Hall Colliton Park Dorchester DT1 1XJ **Engineer:**

Parsons Brinkerhoff Queen Victoria House Redland Hill Bristol Avon BS6 6US

Issue No	Date	Details
1	October 2014	Final Report

The title to this report is vested in the Employer named but title to copyright is retained. The Contracts (Rights of Third Parties) Act 1999 does not apply to the contract with the Employer and the provisions of the said Act are hereby excluded.

CONTENTS

			Page
1	INTR	ODUCTION	2
2	THE	SITE AND GEOLOGY	2
	2.1	The Site	
	2.2	Published Geology	
3	FIEL	DWORK	3
	3.1	General	
	3.2	Exploratory Holes	
		Instrumentation and Monitoring	
		In Situ Testing	
4	GEO	TECHNICAL LABORATORY TESTING	5
	REF	ERENCES	7
ENC	CLOSU	IRES	
	А	EXPLORATORY HOLE RECORDS	
	В	INSTRUMENTATION AND MONITORING	
	С	IN SITU TESTING	
	П		

- D GEOTECHNICAL LABORATORY TEST RESULTS
- E PHOTOGRAPHS
- F DRAWINGS

1 INTRODUCTION

In June 2014 Environmental Scientifics Group (ESG) was commissioned by Parsons Brinkerhoff (PB), on behalf of Dorset County Council (DCC), to carry out a ground investigation at Dinah's Hollow, Melbury Abbas. The investigation was required to obtain geotechnical information for a slope stability assessment.

The scope of the investigation, which was specified by PB, comprised dynamic sample with rotary core follow-on boreholes, in situ testing and laboratory testing. The investigation was carried out in accordance with the contract specification, Eurocode 7 and relevant related standards identified below (see also References). The fieldwork was carried out between 4 July and 3 August 2014.

This report presents the factual records of the fieldwork and laboratory testing. The data is also presented separately in digital format following AGS (2005).

A previous investigation had been carried out by Structural Soils (Report No 728347 dated September 2013). A copy of their borehole logs and site plan was made available to ESG by PB at the outset of the current investigation.

2 THE SITE AND GEOLOGY

2.1 The Site

Dinah's Hollow is a road situated in the village of Melbury Abbas, approximately 3 km south east of Shaftesbury and approximately 6 km north of Iwerne Minster, see Site Location Plan in Enclosure F. The site is at National Grid reference ST882205.

The linear site is approximately 450 m in length and comprises a macadam highway, referred to as Dinah's Hollow, trending in a north-south direction and two steeply dipping slopes located immediately to the east and west of the highway. The slopes dip towards the highway such that it is located in a cutting.

The site is bound by open agricultural fields in all directions.

2.2 Published Geology

The published geological map covering the area, BGS Sheet 313 (1994), shows the site to be underlain by strata of the Upper Greensand Formation, of Cretaceous age.

Dinah's Hollow descends in elevation from north to south, passing from the outcrop of the Boyne Hollow Chert Member in the north, down through the underlying Shaftsbury Sandstone Member in the central part of the site, onto the outcrop of the underlying Cann Sand Member at the southern end of the site. Based on information given in the BGS memoir for Sheet 313 (BGS, 1995), these units can be summarised as follows:

Boyne Hollow Chert Member:	Glauconitic quartz SAND and SANDSTONE with cherty and siliceous concretions and local beds of chert up to 0.6 m thick.		
Shaftesbury Sandstone Member:	Alternating beds of glauconitic SAND and weakly calcite- cemented and glauconitic SANDSTONE, capped by beds of hard, shelly, well-cemented, glauconitic SANDSTONE ('Ragstone').		
Cann Sand Member:	Fine-grained, locally micaceous SAND and very weakly cemented SANDSTONE		

At the southern end of the site the Cann Sand Member is overlain by a narrow strip of Alluvium, that coincides with the stream situated at the base of the valley.

The geology map also shows the presence of two parallel faults, trending SW-NE and downthrown to the east, approximately 0.5 km and 1.0 km to the west of the site.

3 FIELDWORK

3.1 General

The fieldwork was carried out in general accordance with BS 5930+A2 (2010), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole and in situ test locations were selected by PB. The locations were set out from local features. The co-ordinates and reduced levels of the borehole locations were surveyed by JV Survey to National Grid and Ordnance Datum. The exploratory hole locations are shown on the Site Plan in Enclosure F.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

ТҮРЕ	BOREHOLE ID	MAXIMUM DEPTH (m)	REMARKS
Dynamic sampled	BH2-1	7.95	
Dynamic sampled	BH2-2	8.95	
Dynamic sampled	BH2-3	10.95	
Dynamic sampling with rotary core follow on	BH2-4	11.95	
Dynamic sampled	BH2-5	10.95	
Dynamic sampled	BH2-6	16.00	
Dynamic sampling with rotary core follow on	BH2-7	17.00	

SUMMARY OF EXPLORATORY HOLES

The boreholes were generally formed by dynamic sampling, supplemented as appropriate by rotary coring methods. Coring was carried out in BH2-4, from 9.00 m to 10.50 m depth and in BH2-7 from 10.20 m to 11.70 m depth and 12.50m to 17.00m depth.

The exploratory hole records are presented in Enclosure A and should be read in conjunction with the Key which is included in that enclosure. The records provide descriptions of the materials encountered in accordance with BS EN ISO 14688-1 (2002) and 14689-1 (2003), for soils and rocks respectively, as amplified by BS 5930+A2 (2010). The records also give details of the samples taken together with observations made during drilling.

Standard penetration tests (SPT) were carried out in accordance with BS EN ISO 22476-3:2005+A1 (2011) and the results are included on the borehole record. The SPT hammer energy ratio calibration certificate is also included in Enclosure A.

Photographs of the recovered cores and dynamic sampling liners are presented in Enclosure E.

On completion of the fieldwork geotechnical samples were transported to the Bridgend office of ESG for temporary retention, with those required for testing being transferred to Soil Engineering's Geotechnical Laboratory in Leeds and ESG's in-house laboratory at Burton upon Trent.

3.3 Instrumentation and Monitoring

The instruments installed in the exploratory holes are shown on the logs and detailed in Enclosure B. Records of groundwater monitoring carried out by ESG after the fieldwork period are also presented in Enclosure B.

3.4 In Situ Testing

In situ testing was carried out in accordance with the relevant standards as tabulated below. The testing is summarised in the following table and the results are presented in Enclosure C.

SUMMARY OF IN SITU TESTING

ТҮРЕ	QUANTITY	REMARKS
Soil Resistivity Testing	14	BS 1377 (1990)

Soil resistivity testing was undertaken in the bank at specified chainage points adjacent to the Dinah's Hollow highway. The chainage points were specified by PB.

4 GEOTECHNICAL LABORATORY TESTING

The testing was scheduled by PB and was carried out in accordance with BS 1377 (1990) unless otherwise stated. The testing is summarised below and the results are presented in Enclosure D.

SUMMARY OF GEOTECHNICAL LABORATORY TESTING

ТҮРЕ	REMARKS
Moisture Content Determination	23 no.
Atterberg Limit Determination	15 no.
Particle Size Distribution Analysis	2 no.
pH, Acid and Water Soluble Sulphate Content and Total Sulphur of Soils	15 no. Test methods are BS 1377 or others recognised in BRE Special Digest 1 (2005); they are indicated on the results report sheets in Enclosure D.
Consolidated Drained Triaxial Compression Testing with Volume Change Measurement	8 no.

Prepared By	A Putt BSc (Hons) FGS
Reviewed By	M Martin BSc (Hons) MSc FGS
Approved for Issue By	Lynne Llewellyn BSc (Hons) FGS

REFERENCES

- AGS : 2005 : Electronic transfer of geotechnical and geoenvironmental data (Edition 3.1 including addendum May 2005). Association of Geotechnical and Geoenvironmental Specialists.
- BGS England and Wales Sheet 313 : 1994 : Shaftesbury. 1:50 000 geological map (solid and drift). British Geological Survey
- BGS : 1995 : Memoir for 1:50 000 geological sheet 313 (England and Wales). Geology of the country around Shaftesbury. British Geological Survey
- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS 5930+A2 : 2010 : Code of practice for site investigations (Amendment 2). British Standards Institution.
- BS EN 1997-2 : 2007 : Eurocode 7 Geotechnical design Part 2 Ground investigation and testing. British Standards Institution.
- BS EN ISO 14688-1 : 2002 : Geotechnical investigation and testing Identification and classification of soil Part 1 Identification and description. British Standards Institution.
- BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing Identification and classification of rock Part 1 Identification and description. British Standards Institution.
- BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution. British Standards Institution.
- BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing Field testing Part 3 Standard penetration test. British Standards Institution.

ENCLOSURE A EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Hammer Energy Ratio Report Borehole Logs Key Calibration certificate for AB1 BH2-1 to BH2-7

Key to Exploratory Hole Records

SAMPLES

Undisturbed U UT TW P L CBR BLK CS AMAL	CBR mould sam Block sample	tube sample tube sample ample om Windowless or ple om rotary core) tak	nominally 100 mm diameter and full recovery unless of similar sampler), full recovery unless otherwise stated ten for laboratory testing	therwise stated
Disturbed D B	Small sample Bulk sample			
Other W G	Water sample Gas sample			
ES EW	Environmental c Soil sample Water sample	hemistry samples	(in more than one container where appropriate)	
Comments			signed to every sample taken. A sample reference of 'Never, there was no recovery.	IR' indicates that attempt was
	Monitoring samp	oles taken after cor	mpletion of hole construction are not shown on the exp	loratory hole logs.
TESTS				
SPT S or SPT C	Standard Penetr	ation Test, open s	hoe (S) or solid cone (C)	
	Field Records co (SW) is noted. V	blumn; each incren Where the full 300 It column. Where t	defined in BS EN ISO 22476-3 (2005). The incrementa nent is 75 mm unless stated otherwise and any penetra mm test drive is achieved the total number of blows for he test drive blows reach 50 the total blow count beyor	ation under self weight in mm the test drive is presented as
IV HV PP KFH, KRH, KPI	Hand vane shea Pocket penetrom Permeability test	r strength, peak (p neter test, converte	p) and remoulded (r) b) and remoulded (r) ed to shear strength ead, KRH = rising head; KPI = packer inflow); results p acker tests)	rovided in Field Records
DRILLING RECOR	NDS			
The mechanical inc	dices (TCR/SCR/RC	D & If) are define	d in BS 5930+A2 (2010)	
TCR SCR RQD If		very, % signation, % g, mm. Minimum, t	typical and maximum spacings are presented. The ten ore is fragmented.	m
Flush returns, estim	nated percentage w	ith colour where re	elevant, are given in the Records column	
CRF AZCL NR	Core recovered Assessed zone Not recovered	(length in m) in the of core loss	e following run	
GROUNDWATER				
▼ ▽	Groundwater str Groundwater lev	ike rel after standing p	period	
Notes: See report text for full referenc	es of standards	Project No. H	Dinah's Hollow, Melbury Abbas Phase 2 Ground Investigation 14042-14A Dorset County Council	Key Sheet 1 of 2

Key to Exploratory Hole Records

INSTALLATION							
Standpipe/ piezometer		pe/piezometer installations are given on the Record. Legend column shows installed instrument lotted pipe section or tip depth, response zone filter material type and layers of backfill.					
SP SPIE PPIE EPIE	The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone: Standpipe Standpipe piezometer Pneumatic piezometer Electronic piezometer						
Inclinometer or Slip Indicator	The installation c column.	of vertical profili	ng instruments is	indicated on the F	Record. The base of tub	ing is shown in the Legend	
ICE	Biaxial inclinome	The type of instrument installed is indicated by a code in the Legend column at the base of the tubing: Biaxial inclinometer Inclinometer tubing for use with probe Slip indicator					
Settlement Points or Pressure Cells ESET ETM EPCE	the Legend colur The type of instru Electronic settler Magnetic extens Electronic embed	The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the Legend column. The type of instrument installed is indicated by a code in the Legend column: Electronic settlement cell/gauge Magnetic extensometer settlement point					
PPCE INSTALLATION LEGENDS	Electronic push i A legend describ describe the bac	ing the installat			n. Legends additional t	o BS5930 are used to	
	Arisings	Concrete	Grout	Bentonite	Sand Gi	avel Macadam	
NOTES 1	Soils and rocks a amplified by BS			BS EN ISO 1468	8-1 (2002) and 14689-1	(2003) respectively as	
2	For fine soils, consistency determined during description is reported for those strata where undisturbed samples are available. Where the logger considers that the sample may not be representative of the condition in situ, for whatever reason, the reported consistency is given in brackets. The reliability of the sample is indicated by Probably or Possibly as appropriate. Hence (Probably firm) indicates the logger is reasonably confident of the assessment, but (Possibly firm) means less certainty. Where the samples available are too disturbed to allow a reasonable assessment of the in situ condition, no consistency is given.						
3	of their size in re	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs, however, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.					
4	The declination of will be the dip.	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this					
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures						
6	Strata legends are in accordance with BS 5930+A2 (2010).						
7	Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or overwater, or boring at a rate much faster than water can make its way into the borehole (ref BS5930+A2:2010, Clause 47.2.7). In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.						
8	The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass						
	conditions.					Updated March 2012	
Notes: See report text for full referenc	es of standards	Project		elbury Abbas Phase 2 G	Ground Investigation		
		Project No. Carried out for	H4042-14A Dorset County Cou	ıncil		Key Sheet 2 of 2	

Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Dynamic sampling UK Ltd Unit 8 Victory park way Victory road Derby **DE24 8ZF**

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.9
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	6455
Accelerometer No.2:	6457

Hammer Ref:	AB1
Test Date:	13/03/2014
Report Date:	13/03/2014
File Name:	AB1.spt
Test Operator:	ТР

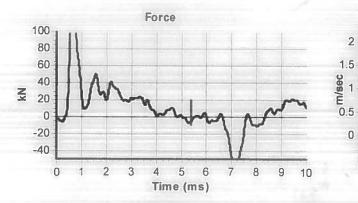
Hammer Information

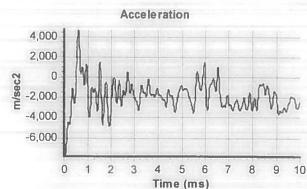
Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
String Length L	. (m):	13.5

Comments / Location

2

1.5


0


0

1

2 3 4 5 6 7 8 9 10

AB-OVO Drilling hammer tested at Dynamic samplings yard.

Time (ms)

Velocity

Calculations

Area of Rod A (mm2): 1021 Theoretical Energy Etheor (J): 473 Measured Energy Emeas (J): 330

Energy Ratio Er (%):

T.parker Signed Title: Manager

The recommended calibration interval is 12 months

70

Drilled CJ Logged NJD Checked MM	Start 03/08/2014 End 03/08/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspection 1.20 to 7.95m	802		ynamic sampling from Depth from to Diameter Casing Depth 1.20m 7.95m 101mm 6.00m	Ground Level Coordinates National Grid Chainage	E	7.38 mO 388311.0 120615.2
Samples a	nd Tests				Strata	1		
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend	Back
-			Casing	Water	Dark brown silty fine SAND (TOPSOIL)	(Thickness) (0.30)	-	Instrum
0.20-0.30	D 1				Firm brown sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER GREENSAND	0.30	° +	,
- 1.00-1.10	D 2				FORMATION)	(1.10)	·	И
1.20-1.65	UT 3	430mm						И
1.70 1.70-2.15	SPT S D 4	N=10 (4,3/3,3,2,2)	1.70	dry	Brown sandy clayey GRAVEL. Sand is fine to medium. Gravel is subangular to subrounded, fine to coarse and of	1.40 (0.50)	° ~ ~ ~	
1.70-2.55	L5	800mm			sandstone and chert. (UPPER GREENSAND FORMATION)	7 1.90		И
2.55 2.55-3.00	SPT S D 6	N=10 (3,1/2,3,2,3)	1.70	dry	Firm light orangish brown sandy gravelly CLAY. Sand is fine to medium. Gravel is angular to subangular, fine to coarse of sandstone and chert. (UPPER			Å
- 3.00-3.45	UT 7	350mm			GREENSAND FORMATION)	(1.90)		И
							· · · ·	И
3.50 3.50-3.95 3.50-4.50	SPT S D 8 L 9	N=6 (2,0/1,1,2,2) 750mm	3.00	dry	3.40-3.80 m Gravel is tabular	-		И
_	-				Medium dense light greyish brown fine to medium SAND. (UPPER GREENSAND	3.80		••
					FORMATION)	-		
4.50-5.45	UT 10	450mm				-		
- 5.00 5.00-5.45	SPT S D 11	N=20 (2,2/3,4,5,8)	4.50	dry	4.95 m Tabular cobble of			
5.00-6.00	L 12	800mm			sandstone 5.00-5.40 m Clayey	(2.80)		
- 6.00-6.45	UT 13	360mm			6.00-6.20 m Slightly gravelly.			
6.50	SPT S	N=13 (3,2/3,4,3,3)	6.00	dry	Gravel of " subangular, fine to medium and of			
6.50-6.95 6.50-7.50	D 14 L 15	850mm			Medium dense light yellowish brown fine to medium SAND. (UPPER GREENSAND FORMATION)	6.60		
7.50	SPT S	N=21 (2,3/4,5,6,6)	7.50	dry		(1.35)		
7.50-7.95	D 16		03/06/2014	1800 dry				SF
-					EXPLORATORY HOLE ENDS AT 7.95 m	· 7.95		
					-			
Depth	Type & No	Records	Date Casing	Time Water		-		
Groundwater Entri Io. Struck Po (m) None observed (s	ost strike behav		Depth se	aled (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m) T	ïme Tool	ls used
otes: For explanati breviations see ke vels in metres. Str	ey sheet. All dep	and oths and reduced given in brackets	Project		Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14	Borehole	3H2-1	
depth column.		ESG www.esg.co.uk	Project No Carried ou		H4042-14 Parsons Brinckerhoff	Sh		

Drilled CJ Logged NJD Checked MM	Start 04/07/2014 End 04/07/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspection to 8.95m	802		Depth from to Diameter Casing Depth 1.20m 8.95m 101mm 7.50m c sampling from 1.20	Ground Level Coordinates National Grid Chainage	E	40.87 mOE 388300.10 120551.40
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, <i>Level</i> (Thickness)	Legend	Backf
	5.4		Casing	Water	Dark brown silty fine SAND (TOPSOIL)	(0.30)		° ▲
0.20-0.30	D 1				Firm light orangish brown sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER	0.30	° ~ ~	
- 1.00-1.10 1.20-1.65	D 2 UT 3	290mm			GREENSAND FORMATION)			
1.70 1.70-2.15 1.70-2.55	SPT S D 4 L 5	N=11 (4,2/2,2,3,4) 800mm	1.70	dry	1.70-3.20 m Gravel of sandstone and chert.	(2.90)		
2.55 2.55-3.00	SPT S D 6	N=27 (4,4/5,5,6,11)	1.70	dry				
- 3.00-3.45	UT 7	330mm			-	-	ļ <u> </u>	 -
3.50 3.50-3.95 3.50-4.50	SPT S D 8 L 9	N=26 (3,4/7,8,6,5) 700mm	3.00	dry	Medium dense light orangish brown sandy very clayey GRAVEL in a firm very sandy CLAY matrix. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER GREENSAND FORMATION)	3.20 (1.10)		
4.50-4.95	UT 10	430mm			Medium dense light greyish brown fine to medium SAND. (UPPER GREENSAND FORMATION)	4.30	<u> </u>	
- 5.00 5.00-5.45 5.00-6.00	SPT S D 11 L 12	N=22 (8,6/6,7,5,4) 900mm	4.50	dry	5.00-5.50 m gravelly. Gravel is subangular, fine to coarse of sandstone.	- (1.20) 		
- 6.00-6.45	UT 13	330mm			Medium dense becoming dense light orangish brown gravelly clayey SAND. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER GREENSAND FORMATION)		· · · · ·	
6.50 6.50-6.95 6.50-7.50	SPT S D 14 L 15	N=26 (4,7/6,6,7,7) 800mm	6.00	dry	-	-		
7.50 7.50-7.95 7.50-8.50	SPT S D 16 L 17	N=20 (2,3/4,4,6,6) 950mm	7.50	dry	-	(3.45)		
8.50 8.50-8.95	SPT S D 18	N=32 (2,6/6,9,8,9)	7.50 04/07/201 7.50	dry 4 1800 dry				
					EXPLORATORY HOLE ENDS AT 8.95 m			
Depth	Type & No	Records	Date Casing	Time Water		-		
Groundwater Entri No. Struck Po (m) None observed (s	ost strike behav	riour	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Too	ols used
otes: For explanati bbreviations see ke vels in metres. Str depth column.	ey sheet. All dep atum thickness	and hths and reduced given in brackets ESG www.esg.co.uk	Project Project N	0.	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14	Borehole	3H2-2	

Drilled CJ Logged NJD Checked MM	Start 07/07/2014 End 07/07/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspection to 10.95m	802		ic sampling from 1.20	Ground Level Coordinates National Grid Chainage	E	4.58 mOI 388283.3 120488.0
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend	Backf
•	,,		Casing	Water	Dark brown silty fine SAND (TOPSOIL)	(Thickness)		Instrum
0.20-0.30	D 1					(0.30) 0.30		, ·
					Firm light orangish brown sandy becoming		· ~	
					fine to medium. Gravel is angular to subrounded fine to coarse of sandstone			
- 1.00-1.10	D 2				and chert. (UPPER GREENSAND	-		И
1.20-1.65	UT 3	450mm			FORMATION).	-		И
						(2.30)		И
1.70	SPT S	N=16 (1,1/3,4,4,5)	1.70	dry	-		· o	K
1.70-2.15 1.70-2.55	D 4 L 5	800mm		,	-			
							· ~	И
					-		- °	И
2.55 2.55-3.00	SPT S D 6	N=11 (5,4/3,3,2,3)	1.70	dry	2.55 m Cobble of	2.60	·	И
2.55-5.00	00				Firm light greyish brown sandy CLAY. sandstone - Sand is fine. (UPPER GREENSAND	(0.40)	<u> </u>	И
3.00-3.45	UT 7	410mm			FORMATION)	3.00	°_°_@	ŀ+
					Brown sandy very clayey subangular and	3.20		
3.50	SPT S	N=6 (2,1/1,1,2,2)	3.00	dry	sandstone and chert. (UPPER GREENSAND	(0.00)		ŀ
3.50-3.95 3.50-4.50	D 8 L 9	850mm				(0.80)	<u> </u>	SP
					Firm light greyish brown slightly sandy silty CLAY. Sand is fine. (UPPER	4.00		ľ
					GREENSAND FORMATION)	4.00		
					Medium dense light orangish brown becoming light greyish brown fine SAND	-		
4.50-4.95	UT 10	380mm			with clayey sand laminae. (UPPER			
					GREENSAND FORMATION) 4.70-6.20 m Light greyish brown			
5.00 5.00-5.45	SPT S D 11	N=17 (1,2/3,4,4,6)	4.50	dry		(2.20)		\mathbb{Z}
5.00-6.00	L 12	800mm				()		
					-			
							[··]	
6.00-6.45	UT 13	390mm					· · · ·	\mathbb{V}
						6.20		\mathbb{V}
6 50	SPT S	N 40 (2 2/2 4 5 C)	6.00	dau	Light greyish brown silty fine SAND. (UPPER GREENSAND FORMATION)	(0.30)		\mathbf{Y}
6.50 6.50-6.95	D 14	N=18 (2,3/3,4,5,6)	6.00	dry	Soft to firm light brown silty CLAY.	6.50	×	
6.50-7.50	L 15	900mm			(UPPER GREENSAND FORMATION)	(0.50)	× × ×	
					Medium dense becoming dense light -	7.00	× · × · ·	\mathbb{Z}
					greyish brown very silty fine SAND. (UPPER GREENSAND FORMATION)		<pre></pre>	
7.50-7.95	UT 16	440mm						\mathbb{Y}
						-	× × ×	
8.00	SPT S	N=24 (2,3/5,6,6,7)	7.50	dry		1	× × × ×	
8.00-8.45 8.00-9.00	D 17 L 18	950mm					<î× ×î	$\langle \rangle$
						1	<	\mathbb{Z}
					-	(3.50)		
9.00-9.45	UT 19	390mm				(2.30)	• × • × • ×	
0.00-0. 1 0	5115	5501111				-	<. × ×	V
							× × × ×	V
9.50 9.50-9.95	SPT S D 20	N=35 (3,4/4,6,11,14)	9.00	dry	9.50-10.00 m Dense mottled	1	* * * * * * *	
9.50-10.50	L 21	950mm			orange		< × × ×	1/
Depth	Type & No	Records	Date Casing	Time Water		+		
Froundwater Entr	ies				Depth Related Remarks *	Chiselling	<u> </u>	-
lo. Struck Pe (m) None observed (s	ost strike behav see Key Sheet)	/iour	Depth s	sealed (m)	From to (m)	Depths (m)	Time Tool	s used
otes: For explanat	tion of symbols a	and	Project		Dinah's Hollow and Melbury Church Phase 2 Ground	Borehole		
vels in metres. Sti depth column.		oths and reduced given in brackets	Project N	lo.	Investigation H4042-14	E	3H2-3	
	(c)	ESG www.esg.co.uk	Carried of	out for	Parsons Brinckerhoff	9	neet 1 of 2	

DrilledCJLoggedNJDCheckedMM	Start 07/07/2014 End 07/07/2014	Equipment, Methods a Unimog mounted Klemm & Hand excavated inspection to 10.95m	302	Depth from to Diameter Casing Depth 0.00m 10.95m 101mm 9.00m nic sampling from 1.20	Ground Level Coordinates National Grid Chainage	+134.58 mOD E 388283.34 N 120488.04
Samples ar	nd Tests			Strata		
Depth	Type & No	Records	Date Time	Description	Depth, Level	Legend Backfill
		Records	Date Casing Time Water 9.00 dr. 07/07/2014 1800 9.00 dr.	Description (Continued from Sheet 1) Medium dense becoming dense light greyish brown very silty fine SAND. (UPPER GREENSAND FORMATION) Light greyish brown mottled orange fine grained SANDSTONE. Recovered as dense	Depth, <i>Level</i> (Thickness) 10.50 (0.45) 10.95	Legend Backfill Instrumen
				-		
 Depth	Type & No	Records	Date Time Casing Water	-		
Groundwater Entrie No. Struck Por (m) None observed (se	st strike behav		Depth sealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanations see ke evels in metres. Stra n depth column. Scale 1:50		and oths and reduced given in brackets ESG www.esg.co.uk 6.4827/10/2014 14:09:41	Project Project No. Carried out for	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff		3H2-3 neet 2 of 2

Drilled CJ Logged NJD Checked MM	Start 08/07/2014 End 08/07/2014	Equipment, Methods a Unimog mounted Klemm 8 Hand excavated inspection 1.20 - 9.00m. Rotary corin 10.50 - 11.95m.	02 pit from GL	1.20m. D	ynamic sampling from ynamic sampling from ynamic sampling	Ground Leve Coordinates National Grid Chainage	E	1.12 mOE 388268.83 120445.38
Samples ar	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend	Backf
			Casing	Walei	Dark brown silty fine SAND (TOPSOIL) -	(0.30)		°.
0.20-0.30	D 1 D 2				Firm brown sandy gravelly CLAY. Sand is fine to medium. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER GREENSAND FORMATION)	0.30	°	, ,
1.20-1.65	UT 3	280mm				(1.80)		
1.70 1.70-2.15 _ 1.70-2.55	SPT S D 4 L 5	N=9 (2,2/2,3,2,2) 900mm	1.70	dry		2.10		
2.55 2.55-3.00	SPT S D 6	N=31 (7,8/9,9,7,6)	1.70	dry	Dense brown sandy clayey subangular to subrounded fine to medium GRAVEL of sandstone and chert. Sand is fine to medium. (UPPER GREENSAND FORMATION)	(1.40)		
- 3.00-3.35	UT 7	380mm				(1.40)	°_0_0 •_0_0	
3.50 3.50-3.95 3.50-4.50	SPT S D 8 L 9	N=14 (1,2/4,3,3,4) 900mm	3.00	dry	Light brown clayey fine SAND. (UPPER	3.50 3.70	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
					Firm light brown locally mottled orange silty CLAY. (UPPER GREENSAND FORMATION)	(0.80)	× × ×	
4.50-4.95	UT 10	410mm			Medium dense light brown clayey becoming Sightly clayey fine SAND. (UPPER 4.70 m Becoming – GREENSAND FORMATION) siightly clayey	4.50		
- 5.00 5.00-5.45 5.00-6.00	SPT S D 11 L 12	N=13 (2,1/3,2,4,4) 900mm	4.50	dry		(2.40)		
- 6.00-6.45	UT 13	390mm				(2.40)		
6.50 6.50-6.95 6.50-7.50	SPT S D 14 L 15	N=17 (3,3/3,4,4,6) 900mm	6.00	dry	Firm orangish brown silty CLAY. (UPPER	6.90		
7.50-7.95	UT 16	400mm			GREENSAND FORMATION)	(0.60) 7.50	× × ×	4
- 8.00 8.00-8.45 8.00-9.00	SPT S D 17 L 18	N=53 (6,12/17,16,10,10) 800mm	7.50	dry	gravelly clayey fine SAND. Gravel is subangular to subrounded fine to coarse of sandstone (UPPER GREENSAND FORMATION)			
- 9.00 9.00-9.45	SPT S D 19	N=100 (9,22/28,22,27,23)	9.00	dry	9.00-10.50 m Recovered as: SAND and SAND and	(2.50)	·	
9.00-10.50	13 NI 0 NI 0 NI		Date	Time	GRAVEL			
Depth Groundwater Entrie	Type & No	Records	Casing	Water	Donth Polated Pamarke *	Chicallin		
No. Struck Po (m) None observed (se	st strike behav	<i>v</i> iour	Depth s	sealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Too	ls used
otes: For explanation obreviations see ke vels in metres. Stra depth column.	ey sheet. All dep atum thickness	oths and reduced	Project Project N Carried o	lo.	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff	Borehole	BH2-4	

Drilled CJ Logged NJD Checked MM	End	t 7/2014 7/2014	Equipment, Methods a Unimog mounted Klemm 80 Hand excavated inspection 1.20 - 9.00m. Rotary corin 10.50 - 11.95m.	12		Depth from to Diameter Casing Depth 0.00m 11.95m 101mm 9.00m ynamic sampling	Ground Level Coordinates National Grid Chainage	+131.12 mOl E 388268.8 N 120445.3
Samples ar	nd Te	ests	-			Strata		
Depth	TCR SCR RQD	lf	Records/Samples	Date Casing	Time Water	Description (Continued from Sheet 1)	Depth, <i>Level</i> (Thickness)	Legend Backf
- 10.50 - 10.50-10.95 - 10.50-11.50 			SPT S №28 (4,3/6,8,7,7) D 2 900mm L 22	9.00	dry	Medium dense to dense thinly bedded	(1.95)	
- 11.50 - 11.50 - 11.50-11.95 			SPT S N=39 (7,7/9,9,10,11) D 23	9.00 08/07/2014 9.00	dry 1800 dry	11.50-11.95 m	11.95	**** **** **** **** ****
Depth Groundwater Entrie Groundwater Entrie No. Struck Po (m) None observed (st	st strik			Date Casing Depth se	Time Water ealed (m)	Popth Related Remarks *	Chiselling Depths (m)	īme Tools used
Notes: For explanati abbreviations see ke levels in metres. Stra in depth column. Scale 1:50	on of sy y sheet atum thi	. All de ickness	and pths and reduced given in brackets ESG www.esg.co.uk 26.4827/10/2014 14.09.46	Project Project No Carried ou		Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff		BH2-4 eet 2 of 2

orilled CJ .ogged NJD Checked MM	Start 09/07/2014 End 09/07/2014	Equipment, Methods a Unimog mounted Klemm 8 Hand excavated inspectior from 1.20m to 10.95m.	02		Depth from to Diameter Casing Depth 1.20m 10.95m 101mm 9.00m	Ground Leve Coordinates National Grid Chainage	E	4.70 mO 388245.2 120378.7
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend	Back
			Casing	Water	Dark brown silty fine SAND (TOPSOIL) -	(Thickness) (0.30)		Instrum °.
0.20-0.30	D 1				Firm light orangish brown slightly gravelly silty CLAY. Gravel is subangular to subrounded, fine to coarse of sandstone. (UPPER GREENSAND FORMATION)	0.30		
1.20-1.65	UT 3	420mm			 		• • •	
1.70 1.70-2.15 1.70-2.55	SPT S D 4 L 5	N=8 (1,4/3,2,1,2) 800mm	1.70	dry	Sandy. Gravel locally absent.			
2.55 2.55-3.00	SPT S D 6	N=10 (2,2/3,2,2,3)	1.70	dry		(4.70)		
- 3.00-3.45	UT 7	430mm						
3.50 3.50-3.95 3.50-4.50	SPT S D 8 L 9	N=14 (1,2/3,3,4,4)	3.00	dry				
4.50-4.95	UT 10	390mm						
5.00 5.00-5.45 5.00-6.00	SPT S D 11 L 12	N=15 (2,3/4,3,3,5)	4.50	dry	Medium dense light greyish brown mottled orange very silty fine SAND. (UPPER GREENSAND FORMATION)	5.00 (1.00)		
· 6.00-6.45	UT 13	340mm			Very dense light greenish brown clayey – fine SAND. (UPPER GREENSAND –	6.00		
6.50 6.50-6.95 6.50-7.50	SPT S D 14 L 15	N=52 (4,8/11,14,15,12) 1000mm	6.00	dry	FORMATION) 6.80-7.00 m Gravelly. Gravel is subangular fine to medium of			
7.50 7.50-7.95 7.50-8.50	SPT S D 16 L 17	N=62 (5,9/13,15,16,18) 950mm	7.50	dry	sandstone			
8.50 8.50-8.95 8.50-9.50	SPT S D 18 L 19	N=63 (2,10/11,17,16,19) 950mm	7.50	dry		(4.95)		
9.50 9.50-9.95 9.50-10.50	SPT S D 20 L 21	N=69 (4,9/10,12,21,26) 950mm	9.00	dry				
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 10.95 m		_ <u>-</u>	
Groundwater Ent Io. Struck P (m)	ries vost strike behav	viour	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Too	ls used
otes: For explana obreviations see l vels in metres. Si depth column.	key sheet. All dep tratum thickness	and oths and reduced given in brackets ESG www.esg.co.uk	Project Project N	o.	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14	Borehole	BH2-5	

DrilledCJLoggedNJDCheckedMM	Start 09/07/2014 End 09/07/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspectio from 1.20m to 10.95m.	802	Dynamic sampling	Depth from to Diam 1.20m 10.95m 101r	eter Casing Depth nm 9.00m	Ground Level Coordinates National Grid Chainage	+124.70 mC E 388245.: N 120378.
Samples ar	nd Tests			Strata				
Depth	Type & No	Records	Date Time		Description		Depth, Level	Legend Back
Samples ar Depth 10.50 10.50-10.95 		Records	Date Casing Time Water 9.00 dry 9.00/1/2014 1800 9.00 9.00 dry	(0 Very dense light gree fine SAND. (UPPER 0 FORMATION)	Continued from Sheet 1)	10.50-10.95 m Dense 	Depth, <i>Level</i> (Thickness)	Legend Back Instrum
(m)	st strike behav	Records viour after 20 minutes. Slow	Date Time Casing Water Depth sealed (m)	Depth Related Remarks From to (m)		- - - - - - - - - - - - - - - - - - -	Chiselling Depths (m) T	ime Tools used
lotes: For explanati bbreviations see ke evels in metres. Stra n depth column. Scale 1:50	y sheet. All dep atum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 6.4827/10/2014 14.09.49	Project Project No. Carried out for	Dinah's Hollow and Melbur Investigation H4042-14 Parsons Brinckerhoff	y Church Phase 2 Ground			H2-5 eet 2 of 2

Drilled CJ Logged NJD Checked MM	Start 10/07/2014 End 24/07/2014	Equipment, Methods a Unimog mounted Klemm & Hand excavated inspection from 1.20 to 16.00m.	02		Depth from to Diameter Casing Depth 1.20m 16.00m 101mm 12.00m	Ground Leve Coordinates National Grid Chainage	
Samples ar	nd Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Back
0.00-2.15	SPT S D 1	N=13 (1,2/3,4,3,3)	0.00	dry	Firm dark brown very sandy gravelly CLAY. Sand is fine to medium. Gravel is angular fine to coarse of chert and sandstone. (TOPSOIL)	(0.30) 0.30 (0.60)	
- 1.20-1.45	UT 2	440mm			Stiff light brownish grey sandy gravelly CLAY, Sand is fine to medium. Gravel is subangular to rounded, fine to coarse - of chert and sandstone. (POSSIBLE HEAD - DEPOSITS) -	0.90	
1.70-2.15 1.70-2.55	D 3 L 4	800mm			Orangish brown clayey fine SAND. (UPPER GREENSAND FORMATION)	(1.30)	
2.55-3.00 2.55-3.00	SPT S D 5	N=51 (6,7/7,11,15,18)	0.00	dry	Light greenish grey slightly clayey fine to medium SAND. (UPPER GREENSAND FORMATION)	2.20 (0.30) 2.50	
- 3.00-4.00	L 6	950mm			Very dense light green gravelly slightly clayey SAND. Gravel is subangular to subrounded fine to coarse of sandstone. (UPPER GREENSAND FORMATION) GRAVEL Gravel is angular, fine to coarse.	(2.00)	
- 4.00-4.45 4.00-4.45 4.00-5.00	SPT D 7 L 8	N=55 (6,8/8,14,15,18) 1000mm	3.00	dry	(Possible band of extremely week sandstone).		
- 5.00-5.45 5.00-6.00 5.00-5.45	SPT L 10 D 9	N=49 (7,11/11,13,11,14) 1000mm	3.00	dry	Medium dense light green slightly silty fine SAND. (UPPER GREENSAND FORMATION) 5.00-5.45 m Dense	4.50	
- 6.00-6.45 6.00-6.45 6.00-7.00	SPT S D 11 L 12	N=33 (4,4/7,8,8,10) 950mm	6.00	dry	6.00-15.00 m Slightly clayey		
- 7.00-7.45 7.00-7.45 7.00-8.00	SPT S D 13 L 14	N=27 (5,5/6,6,7,8) 950mm	6.00	dry			
- 8.00-8.45 8.00-8.45 8.00-9.00	SPT S D 15 L 16	N=27 (2,4/5,5,9,8) 950mm	6.00				
- 9.00-9.45 9.00-9.45 9.00-10.00	SPT S D 17 L 18	N=15 (2,4/4,3,4,4) 1000mm	10/07/2014 9.00 <u>9.00</u> 23/07/2014 9.00	dry dry			
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 16.00 m		
Groundwater Entri No. Struck Po (m) None observed (s	st strike behav	riour	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
otes: For explanati bbreviations see ke evels in metres. Stra depth column.	ey sheet. All dep atum thickness	oths and reduced	Project Project No Carried of	D .	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff	Borehole	BH2-6

Drilled CJ Logged NJD Checked MM	Start 10/07/2014 End 24/07/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspection from 1.20 to 16.00m.	802		Depth from to Diameter Casing Depth 1.20m 16.00m 101mm 12.00m	Ground Level Coordinates National Grid Chainage	+14	3.00 mOD - -
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description (Continued from Sheet 1)	Depth, Level (Thickness)	Legend	Backfil Instrumer
10.00-10.45 10.00-10.45 10.00-11.00 	SPT S D 19 L 20 SPT S D 21	N=20 (2,4/3,5,5,7) 1000mm N=35 (3,6/8,7,9,11)	9.00	dry dry	Medium dense light green slightly silty fine SAND. (UPPER GREENSAND FORMATION)	(11.50)		
- 12.00-12.45 12.00-12.45 12.00-13.00	L 22 SPT S D 23 L 24	1000mm N=26 (2,3/5,6,7,8)	12.00	dry	Uerise. 			
- 13.00-13.45 13.00-13.45 13.00-14.00	SPT S D 25 L 26	N=21 (2,4/3,5,6,7) 1000mm	12.00	dry				
- 14.00-14.45 14.00-14.45 14.00-15.00	SPT D 27 L 28	N=34 (2,3/6,8,9,11) 1000mm	12.00	dry	14.00-16.00 m Becoming dense. 14.00-16.00 m Occasional shell ragments. 14.00-16.00 m Locally motied light orange			
 15.00-15.45 15.00-15.45 15.00-16.00 	SPT S D 29 L 30	N=32 (4,5/6,6,9,11) 1000mm	12.00 23/07/2014 12.00	dry 4 1800 dry		16.00		
Depth	Type & No	Records	Date Casing	Time Water	EXPLORATORY HOLE ENDS AT 16.00 m			SPI
Groundwater Entri No. Struck Po (m) None observed (s	st strike behav	/iour	Depth se	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m) 1	Time Tool	s used
lotes: For explanati bbreviations see ke evels in metres. Stra n depth column. Scale 1:50	ey sheet. All dep atum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 6.4827/10/2014 14:09:53	Project Project No Carried ou	0.	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff		3H2-6 leet 2 of 2	

Drilled CJ Logged NJD Checked MM	Start 24/07/2014 End 25/07/2014	Equipment, Methods Unimog mounted Klemm Hand excavated inspection 1.20-10.20m. Rotary cori Rotary coring 12.50-17.00	802 on pit from GL ng 10.20-11.7	-1.20m. Dy	amic sampling from constraints ampling from constraints ampling 12.50m.	oth Ground Leve Coordinates National Grid Chainage		1.30 mO[
Samples ar	nd Tests				Strata	-		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)		Backf
0.60	D 1				Medium dense light greyish brown clayey fine SAND. (UPPER GREENSAND FORMATION)	(********************************	· · ·	
- 1.20-1.65	UT 2	280 mm rec					· · ·	
1.70-2.15 1.70-2.15 1.70-2.55	SPT S D 3 L 4	N=12 (2,2/3,2,3,4)	0.00	dry	1.70-7.00 r Becomin mottled orange	a _		
2.55-3.00 2.70-3.15	D 5 SPT S	N=22 (2,3/4,6,6,6)	0.00	dry			· · · · · ·	
- 3.00-3.45 3.50-3.95 3.50-3.95	UT 6 SPT S D 7	350 mm rec N=11 (2,2/3,3,2,3)	3.00	dry				
3.50-4.50	L8	850 mm rec						
4.50-4.95 - 5.00-5.45 5.00-5.45 5.00-6.00	UT 9 SPT S D 10 L 11	N=16 (3,3/3,4,4,5)	3.00	dry	5.00-7.00 m Wi very sandy da laminad	/ -		
- 6.00-6.45	UT 12	350 mm rec						
6.50-6.95 6.50-6.95 6.50-7.50	SPT S D 13 L 14	N=23 (3,3/6,6,5,6) 900 mm rec	6.50	dry	6.50-7.00 m Wi reddish brow nodule:	ו ד		
7.50-7.95	UT 15	390 mm rec			Light green clayey fine SAND. (UPPER GREENSAND FORMATION)	- (0.80) - 7.80		
- 8.00-8.45 8.00-8.45 8.00-9.00	SPT S D 16 L 17	N=23 (4,5/6,5,6,6)	6.00	dry	Medium dense light greyish brown mottled orange clayey fine SAND with very sandy clay laminae. (UPPER GREENSAND FORMATION)			
- 9.00-9.45	UT 18					_ (1.55) 		
9.50-9.95 9.50-9.95 9.50-10.20	SPT S D 19 L 20	N=20 (4,4/4,4,4,8) 650 mm rec	9.00	dry	Extremely weak light greyish brown glauconitic fine to medium grained SANDSTONE. Recovered as: clayey sandy	9.35 9.60 (0.60)	· · · · · · · · · · · · · · · · · · ·	
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 10.20 m	4		
Groundwater Entri Io. Struck Po (m) None observed (s	ost strike behav	iour	Depth s	sealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Too	s used
otes: For explanati obreviations see ke vels in metres. Stra depth column.	ey sheet. All dep atum thickness	oths and reduced	Project Project N Carried o	lo.	Dinah's Hollow and Melbury Church Phase 2 Ground nvestigation 14042-14 arsons Brinckerhoff	Borehole	BH2-7	

Drilled CJ Logged NJD Checked MM	End	7/2014	Equipment, Methods at Unimog mounted Klemm 80 Hand excavated inspection 1.20-10.20m. Rotary coring Rotary coring 12.50-17.00n)2 pit from GL-1 10.20-11.70r	.20m. Dy	namic sampling from nic sampling 12.50m.	Ground Level Coordinates National Grid Chainage	+131.30 mC
Samples ar	nd Te	ests				Strata		
Depth	Туре	& No	Records	Date Casing	Time Water	Description (Continued from Sheet 1)	Depth, Level (Thickness)	Legend Back
_ 10.20-11.70	20 13 13	NI 220 220	If NI/220/220		0.000	9.35m - 9.60m : GRAVEL. Gravel is angular fine to coarse of weak sandstone. (UPPER GREENSAND 10.42 m Non intact and rotadt and pogmet is angular fine to coarse intact and medium strong. 9.60m - 10.20m : Medium dense light greyish brown mottled orange clayey SAND with very sandy clay laminae. (UPPER 10.42 m Non intact and medium strong.	- 10.20 (0.30) 10.50	
11.70-12.15 11.70-12.15 _ 11.70-12.50		NI NI NI	SPT S №29 (3,3/5,6,7,11) D 22 600 mm rec L 23	9.00	dry	GREENSAND FORMATION) WS22. Strong medium bedded light greyish brown fine to medium grained SANDSTONE. Fractures dip 5-10 degrees; stepped smooth and clean. (UPPER GREENSAND FORMATION)	(2.50)	
12.50-12.83	65		SPT S 174 (11,23/ 35,39,100 for 25mm)	9.00	dry	Extremely weak light greyish brown fine to medium glauconitic SANDSTONE. Recovered as: slightly gravelly clayey fine to medium SAND. Gravel is angular fine to medium. (UPPER GREENSAND FORMATION)		
12.50-14.00	40 19				0.000	Extremely to very weak medium bedded light greyish brown glauconitic fine grained SANDSTONE with occasional dark brown disturbed bioturbated laminae of sand and shell fragments. (UPPER GREENSAND FORMATION) 13.71-13.92 m Nonintact. 13.92-14.00 m Extremely weak 14.00-14.16 m		
14.00-15.50	89 85 54	NI 180 400		24/07/2014 9.00 25/07/2014	0.000 1800 dry 0800	14.16-15.04 m Very weak 15.04-15.27 m Weak 15.27-15.50 m Very weak 15.27-15.50 m Very weak 15.27 m Fracture Strong light brown glauconitic fine		
15.50-17.00	96 56 35			9.00	15.30 0.000	grained SANDSTONE. Discontinuities are widely spaced and dip 5 degrees, closely spaced undulating. Sand infill <1mm. (UPPER GREENSAND FORMATION) Light brown clayey fine SAND. (UPPER GREENSAND FORMATION) Light or undulating for the same set of the same se	15.70	
				25/07/2014	1800	brown. <5mm. 15.90-16.70 m Largely non		
		L		9.00	15.30	EXPLORATORY HOLE ENDS AT 17.00 m weak to very weak	17.00	SP
Depth	TCR SCR RQD	lf	Records/Samples	Date Casing	Time Water			
Groundwater Entri No. Struck Po (m) None observed (s	ee Key	Sheet)		Depth se	aled (m)	Depth Related Remarks * From to (m)		Time Tools used
Notes: For explanati abbreviations see ke evels in metres. Stra- n depth column. Scale 1:50	ev sheet	. All dej ickness	oths and reduced	Project Project No Carried ou	-	Dinah's Hollow and Melbury Church Phase 2 Ground Investigation H4042-14 Parsons Brinckerhoff		3H2-7 heet 2 of 2

ENCLOSURE B INSTRUMENTATION AND MONITORING

Groundwater Installation Details	B1
Groundwater Monitoring	B2

Groundwater Installation Details

-	-		-						-	
Hole No	Instrument ID	Installation Type	Date of Installation	Reference depth (mBGL)	Piezometer Diameter (mm)	Top of response zone (mBGL)	Base of response zone (mBGL)	Tubing Completion Details	Headworks	Remarks
BH2-1	1	SPIE	3 Aug 2014	7.50	19	3.80		Open	Lockable top cover	
BH2-2	1	SPIE	4 Aug 2014	8.50	19	3.00	8.50	Open	Lockable top cover	
BH2-3	1	SPIE	7 Jul 2014	3.50	19	3.00	3.50	Open	Lockable top cover	
BH2-4	1	SPIE	8 Jul 2014	11.50	19	7.50	11.50	Open	Lockable top cover	
BH2-5	1	SPIE	9 Jul 2014	10.50	19	10.00	11.00	Open	Lockable top cover	
BH2-6	1	SPIE	24 Jul 2014	15.70	19	15.50	16.00	Open	Lockable top cover	
BH2-7	1	SPIE	25 Jul 2014	17.00	19	2.00	17.00	Open	Lockable top cover	

Notes: Type: SP - Standpipe, SPIE - Standpipe Piezometer, HPIE - Hydraulic Piezometer, PPIE -Pneumatic Piezometer, EPIE - Electronic Piezometer Prepared: 22/09/2014 13:53

Groundwater Monitoring

	₽	t	t	0			Re	ading	
Hole ID	Instrument ID	Instrument Type	Base of Instrument (mBGL)	Reference Depth (mBGL)	Date	Time (hhmmss)	Water Level (mBGL) * calculated	Head (m above Tip) * calculated	Comments
BH2-1	1	SPIE	7.5	7.50	4 Aug 2014	010000			Dry
BH2-1	1	SPIE	7.5	7.50	19 Aug 2014	010500			Dry
BH2-1	1	SPIE	7.5	7.50	3 Sep 2014	010000			Dry
BH2-1	1	SPIE	7.5	7.50	24 Sep 2014	093800			Dry
BH2-2	1	SPIE	8.5	8.50	4 Aug 2014	100000			Dry
BH2-2	1	SPIE	8.5	8.50	18 Aug 2014	100000			Dry
BH2-2	1	SPIE	8.5	8.50	3 Sep 2014	105300			Dry
BH2-2	1	SPIE	8.5	8.50	24 Sep 2014	100000			Dry
BH2-3	1	SPIE	3.5	3.50	4 Aug 2014	110000			Dry
BH2-3	1	SPIE	3.5	3.50	19 Aug 2014	134500			Dry
BH2-3	1	SPIE	3.5	3.50	3 Sep 2014	110000			Dry
BH2-3	1	SPIE	3.5	3.50	24 Sep 2014	110000			Dry
BH2-4	1	SPIE	11.5	11.50	4 Aug 2014	113300			Dry
BH2-4	1	SPIE	11.5	11.50	19 Aug 2014	110500			Dry
BH2-4	1	SPIE	11.5	11.50	3 Sep 2014	110500			Dry
BH2-4	1	SPIE	11.5	11.50	24 Sep 2014	112500			Dry
BH2-5	1	SPIE	10.5	10.50	4 Aug 2014	131200	8.37	2.13 *	
BH2-5	1	SPIE	10.5	10.50	19 Aug 2014	111500	8.50	2.00 *	
BH2-5	1	SPIE	10.5	10.50	3 Sep 2014	112500	8.45	2.05 *	
BH2-5	1	SPIE	10.5	10.50	24 Sep 2014	113800	8.57	1.93 *	
BH2-6	1	SPIE	15.7	15.70	4 Aug 2014	120000			Dry
BH2-6	1	SPIE	15.7	15.70	19 Aug 2014	113500			Dry
BH2-6	1	SPIE	15.7	15.70	3 Sep 2014	134500			Dry
BH2-6	1	SPIE	15.7	15.70	24 Sep 2014	143500			Dry
BH2-7	1	SPIE	17	17.00	4 Aug 2014	125500			Dry
BH2-7	1	SPIE	17	17.00	19 Aug 2014	120000	14.45	2.55 *	
BH2-7	1	SPIE	17	17.00	3 Sep 2014	145200			Dry
BH2-7	1	SPIE	17	17.00	24 Sep 2014	153300	14.72	2.28 *	

Notes: Type: SP - Standpipe, SPIE - Standpipe Piezometer, HPIE - Hydraulic Piezometer, PPIE -Pneumatic Piezometer, EPIE - Vibrating Wire Piezometer, PWEL - Pumping Well

ENCLOSURE C

Soil Resistivity Test Data

SR1

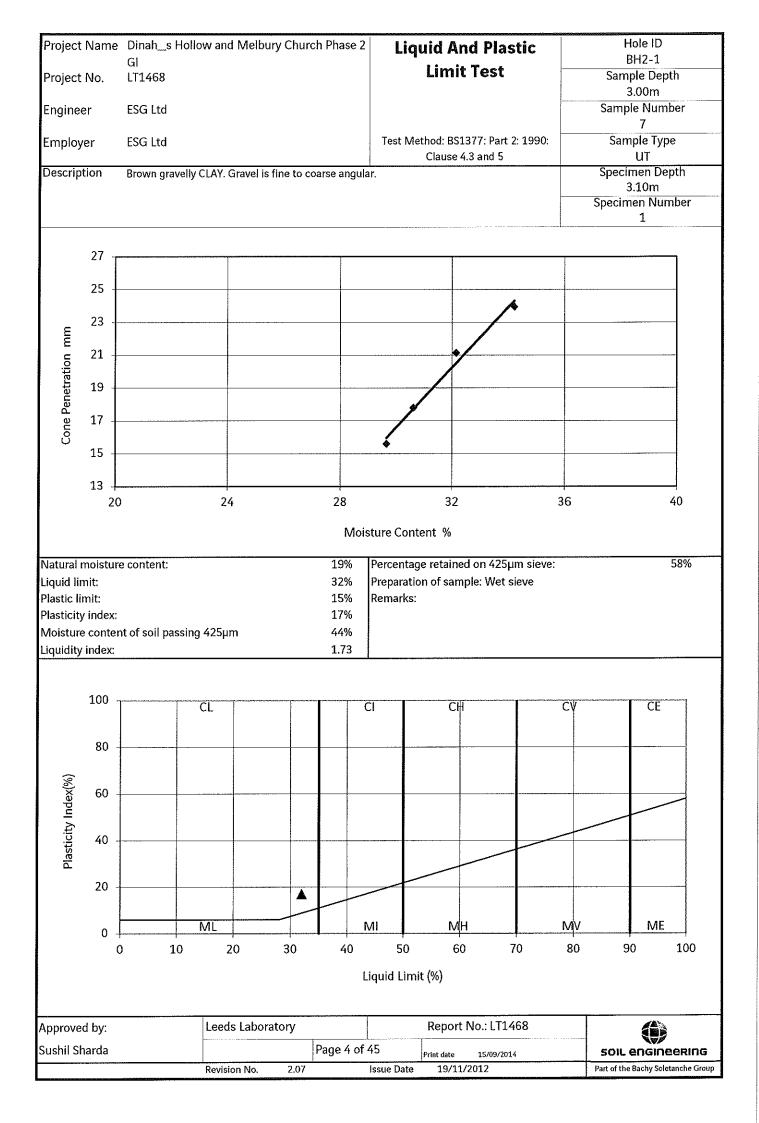
Soil Resistivity Test Data

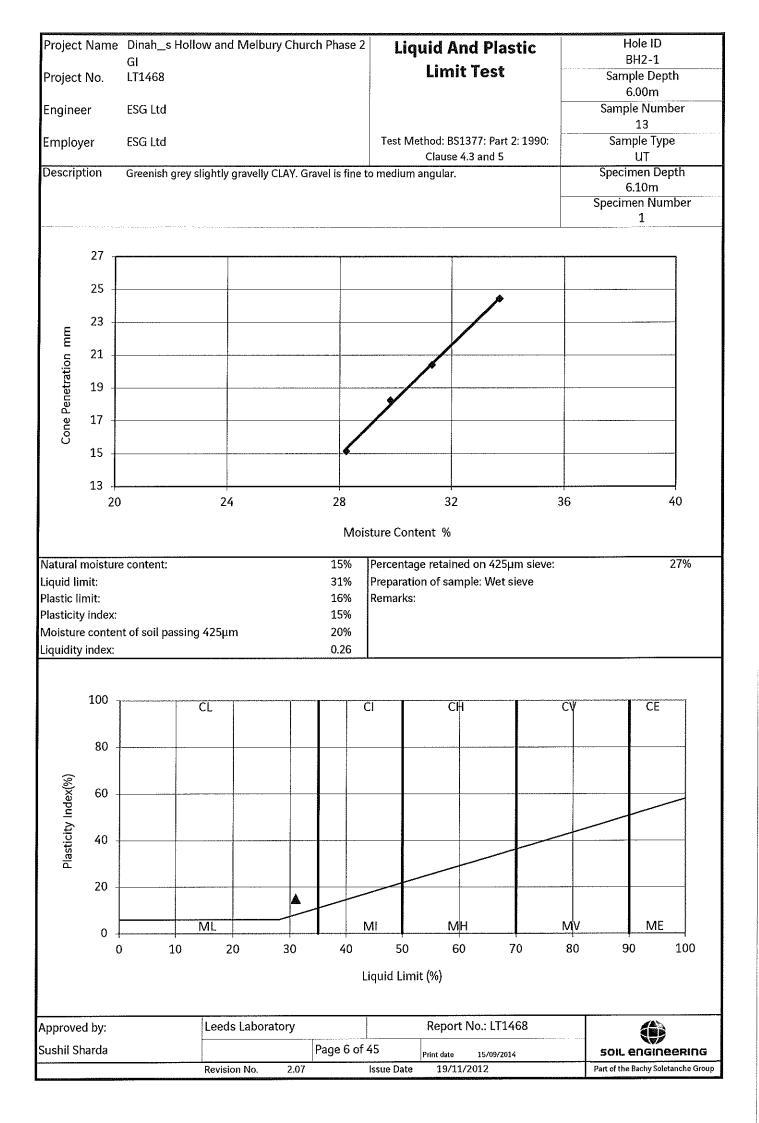
	6	· · · · · ·	(-)			· • • · · · · · / •	<u>۱</u>								
Bank &		pacing				istivity (ρ	a)	Soil Resistivity (ρ _a)							
Chainage	2.5m	5.0m	10.0m		(Ωm)		(Ωcm)							
(m)		istance													
		Error (%	-	2.5m	5.0m	10.0m	Average	2.5m	5.0m	10.0m	Average				
E90		0.998		21.708	15.677	11.341	16.24203	2170.841	1567.655	1134.115	1624.203				
	1.7	2.1	0.1												
W110	1.463	0.693	0.331	11.49	10.886	10.399	10.92489	1149.038	1088.562	1039.867	1092.489				
_	3.6	4.4	0.2												
E130	1.311	0.666	0.396	10.297	10.462	12.441	11.06626	1029.657	1046.15	1244.071	1106.626				
	0.0	0.0	0.0												
W150	1.158	0.498	0.301	9.0949	7.8226	9.4562	8.791223	909.4911	782.2566	945.6194	879.1223				
	1.4	7.8	0.1												
E170	0.801	0.494	0.311	6.291	7.7597	9.7704	7.940375	629.1039	775.9734	977.0353	794.0375				
	0.3	4.0	0.0												
W190	1.789	0.492	0.284	14.051	7.7283	8.9221	10.23374	1405.077	772.8318	892.2123	1023.374				
	0.1	6.3	0.6												
E210	1.941	0.773	0.315	15.245	15.245	12.142	9.896	12.42762	1524.458	1214.226	989.6017	1242.762			
	2.9	5.1	3.4												
W230	1.524	0.508	0.296	11.969	7.9796	9.2991	9.749409	1196.947	797.9645	929.9114	974.9409				
	0.4	5.3	0.2												
E250	1.931 0.4	0.716 3.4	0.363	15.166	11.247	11.404	12.60564	1516.604	1124.69	1140.398	1260.564				
	1.748	0.498	0.0 0.314												
W270	0.0	7.6	0.314	13.729	7.8226	9.8646	10.47198	1372.876	782.2566	986.4601	1047.198				
	3.422	0.923	0. 4												
E290	0.6	0.0	0.1	26.876	14.498	11.498	17.62433	2687.633	1449.845	1149.823	1762.433				
	2.561	0.592	0.433												
W310	0.1	0.2	0.3	20.114	9.2991	13.603	14.33875	2011.405	929.9114	1360.31	1433.875				
	7.115	1.697	0.509												
E330	0.0	0.3	0.2	55.881	26.656	15.991	32.84273	5588.108	2665.641	1599.071	3284.273				
	5.011	2.154	0.924												
W350	1.4	2.0	0.3	39.356	33.835	29.028	34.07319	3935.63	3383.495	2902.832	3407.319				

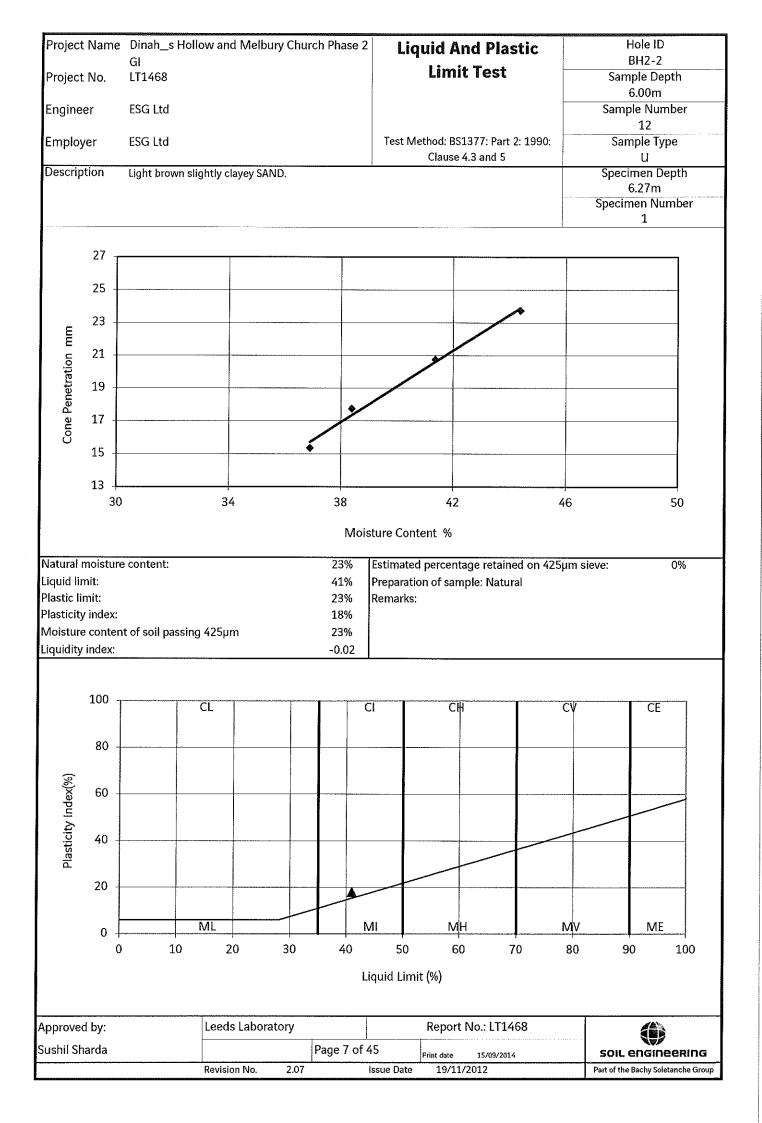
Geometric Factor (k)										
Wen	Wenner 4-Pin Method (k=2πa)									
	Spacings									
2.5m	2.5m 5.0m 10.0m									
15.7079633	31.41592654	62.83185307								

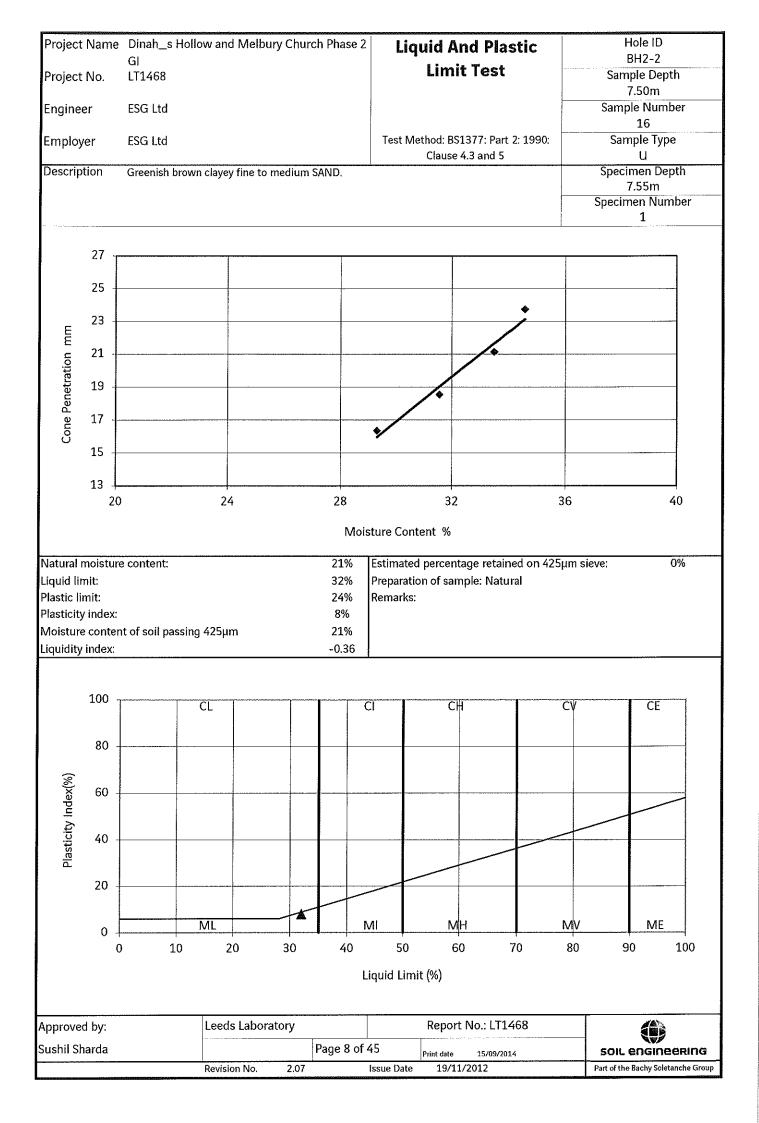
Notes:

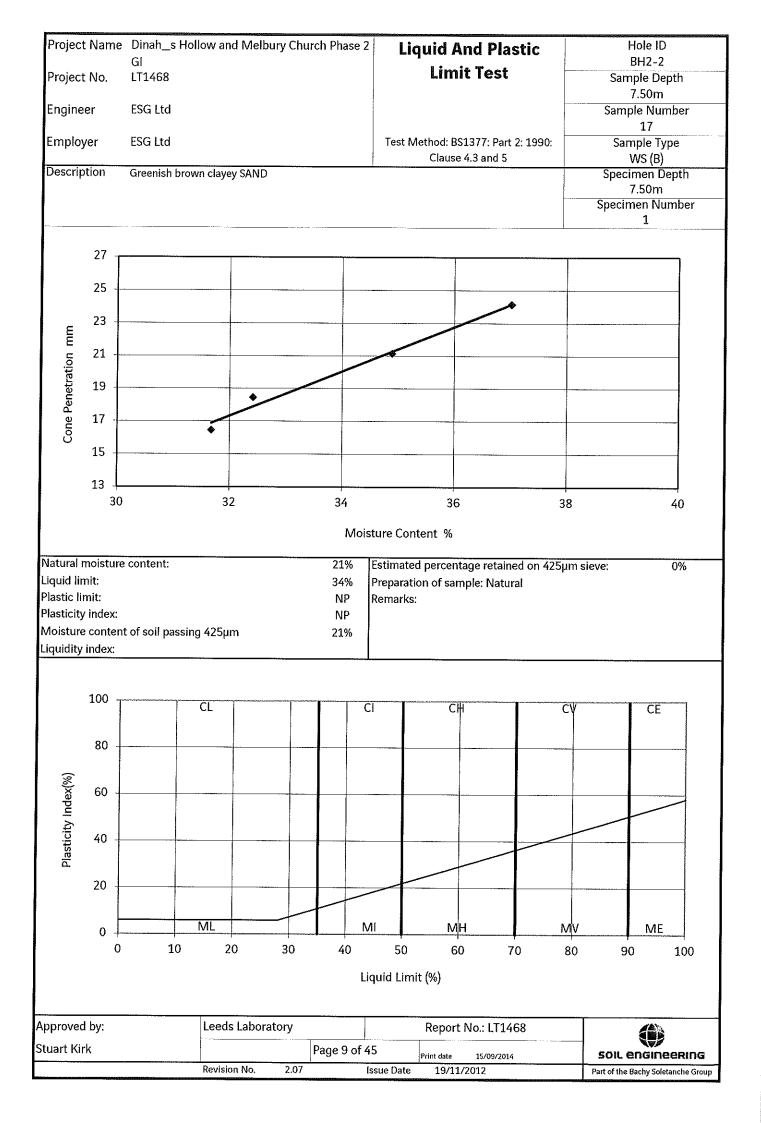
Project	Dinahs Hollow, Melbury Abbas Phase 2 Ground Investivgation
Project No.	H4042-14A
Carried out for	Dorset County Council

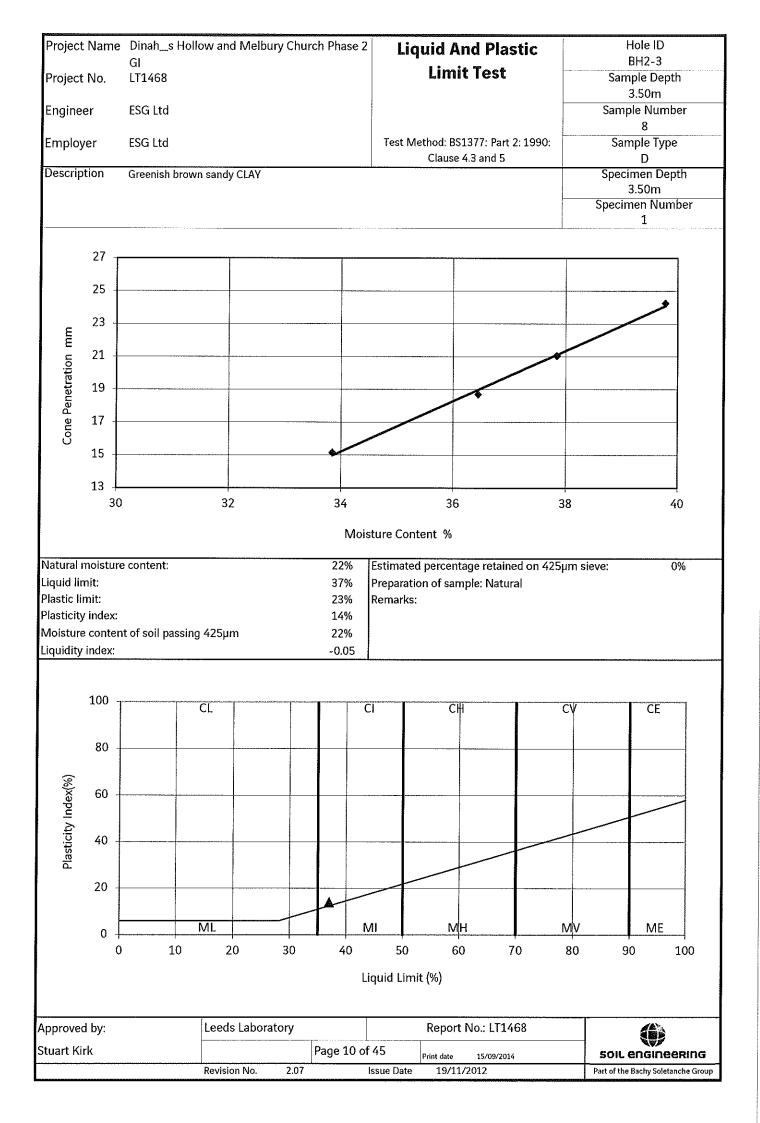

ENCLOSURE D GEOTECHNICAL LABORATORY TEST RESULTS

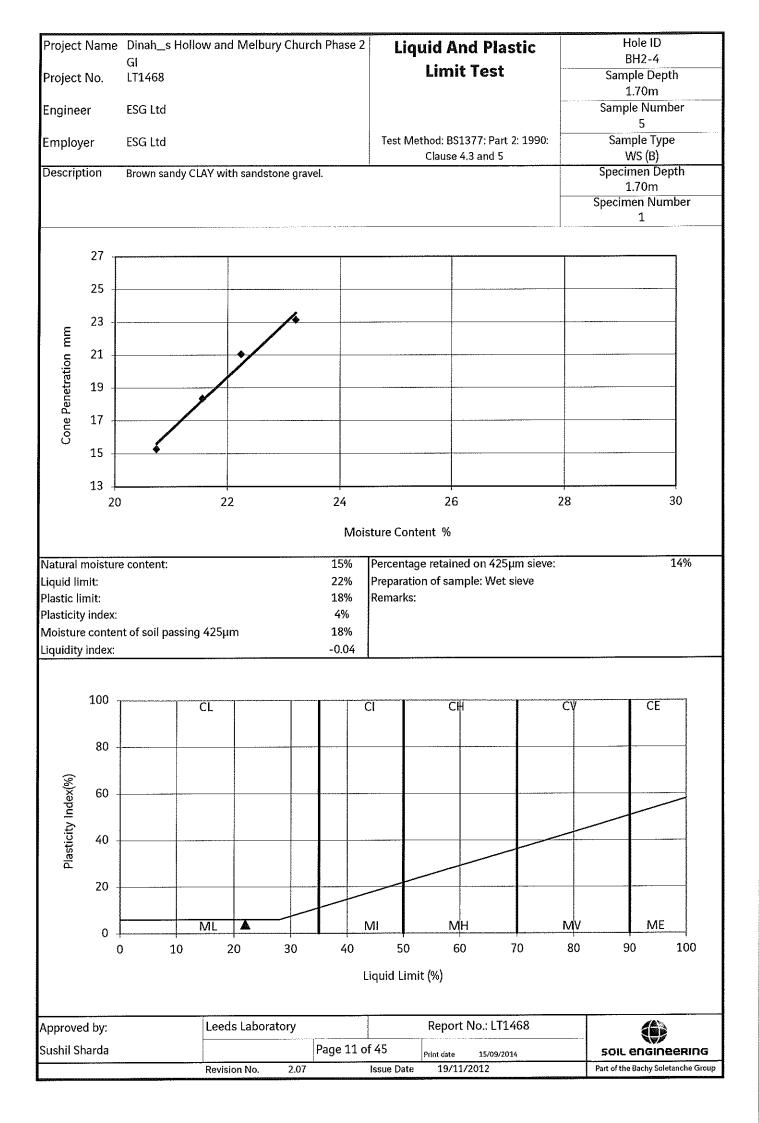

Soil Engineering Report Chemical Test Results LT1468 ESG Report No S144904 Ver. 3

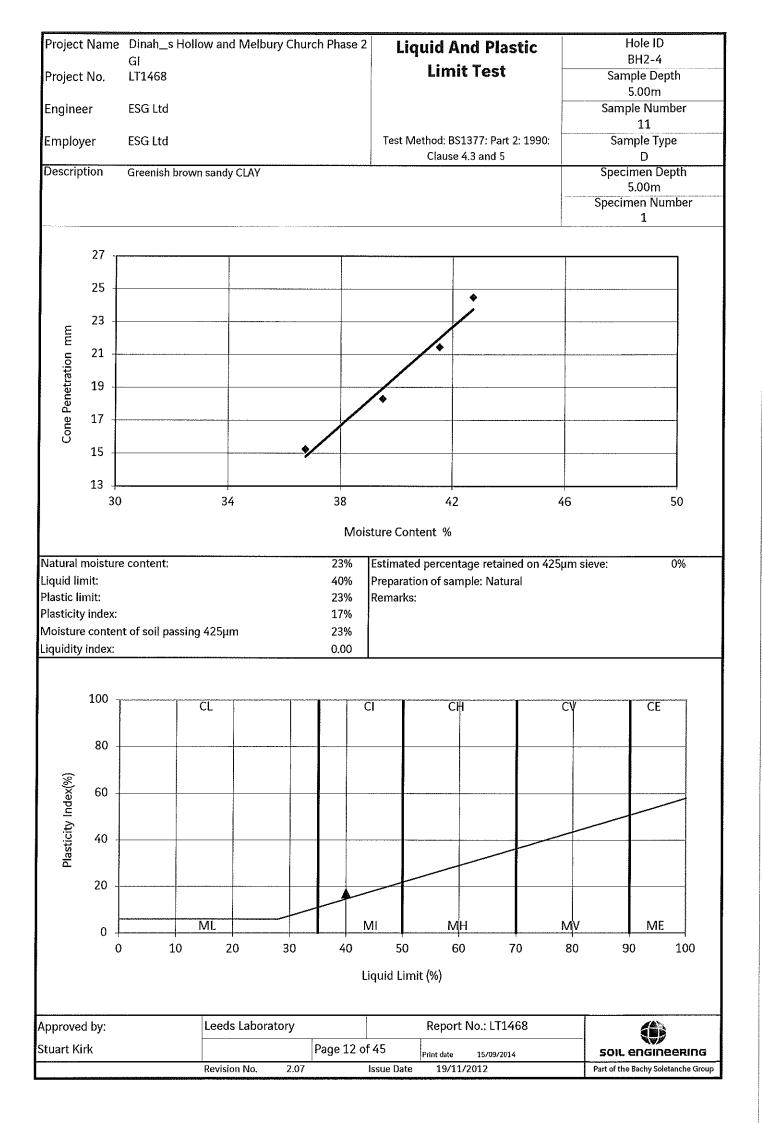

Key to Laboratory Summary Sheets Common to all summaries Sample Type Undisturbed sample u D Small disturbed sample Ρ **Piston sample** В Bulk disturbed sample TW Thin walled sample BLK Block sample L Liner sample C Rock core AMAL Amalgamated sample Test status Any result in italics indicates a test that is not within the scope of the UKAS accreditation for this laboratory. Summary of Laboratory Soil Tests: Index / Classification Tests Particle density Small pyknometer method Gas jar method p g Plastic index N/P Non plastic, although liquid limit will have been determined if requested Particle size (PSD) 1 Following value in silt column denotes combined clay and silt fraction Following value in clay column denotes sedimentation by pipette, else sedimentation is by hydrometer. р Summary of Laboratory Soil Tests: Strength and Permeability Tests Triaxial uu Single stage unconsolidated quick undrained uum Multi stage unconsolidated quick undrained UU3 Set of 3 unconsolidated quick undrained cu Single stage consolidated undrained сим Multi stage consolidated undrained сиз Set of 3 consolidated undrained CD Single stage consolidated drained CDM Multi stage consolidated drained CD3 Set of 3 consolidated drained Note that single stage tests are reported assuming f = 0 for total stress and c' = 0 for effective stress Consol Oed One-dimensional oedometer Hvd Hydraulic cell consolidation coefficient of compressibility quoted for p0 to p0 + 100kPa, where determined m_v Permeability С Constant head permeability Т Triaxial permeability Shearbox SSB Small shear box LSB Large shear box Peak value Residual value р r RS **Ring shear** Summary of Laboratory Soil Re-Use Test MCV s Intercept of calibration line in MCV calibration int MCV value at natural or specified moisture content Summary of Laboratory Rock Strength Tests Point Load Туре D Diametral Axial А (Combination of) Irregular lump I В Block L Test performed parallel to planes of weakness Test performed perpendicular to planes of weakness Ρ х Invalid failure of point load (not broken between points of load application) Summary of Laboratory Rock Materials Tests Ten% fines Soaked test w d Dry test Point Load Index Result Point Load Туре D Diametral А Axial (Combination of) L Irregular lump В Block 1 Parallel to planes of weakness Р Perpendicular to planes of weakness Х Invalid failure of point load (not broken between points of load application) Dimensions Diameter of core or average smallest width perpendicular to axis of loading in a block or irregular lump W D Distance between platens when just in contact with specimen D Distance between platens at point of failure De Equivalent core diameter ls P/De² Is(50) FxIs F (De/50)^{0.45} Is(50) point load strength index corrected for a diametral test of core diameter 50mm For Axial/Lump tests $De^2 = (4/Pi) \times (W \times D')$ For Diametral tests De² = D x D' Important note: summary sheets are provided for convenience and in no way replace individual test result sheets which shall, without exception, be regarded as the definitive result. Report number LT1468 Page 2 of 45 SOIL ENGINEERING orm No. LA8001 29/07/2010 Revision No. 2.02 Issue Date Part of the Bachy Soletanche Group

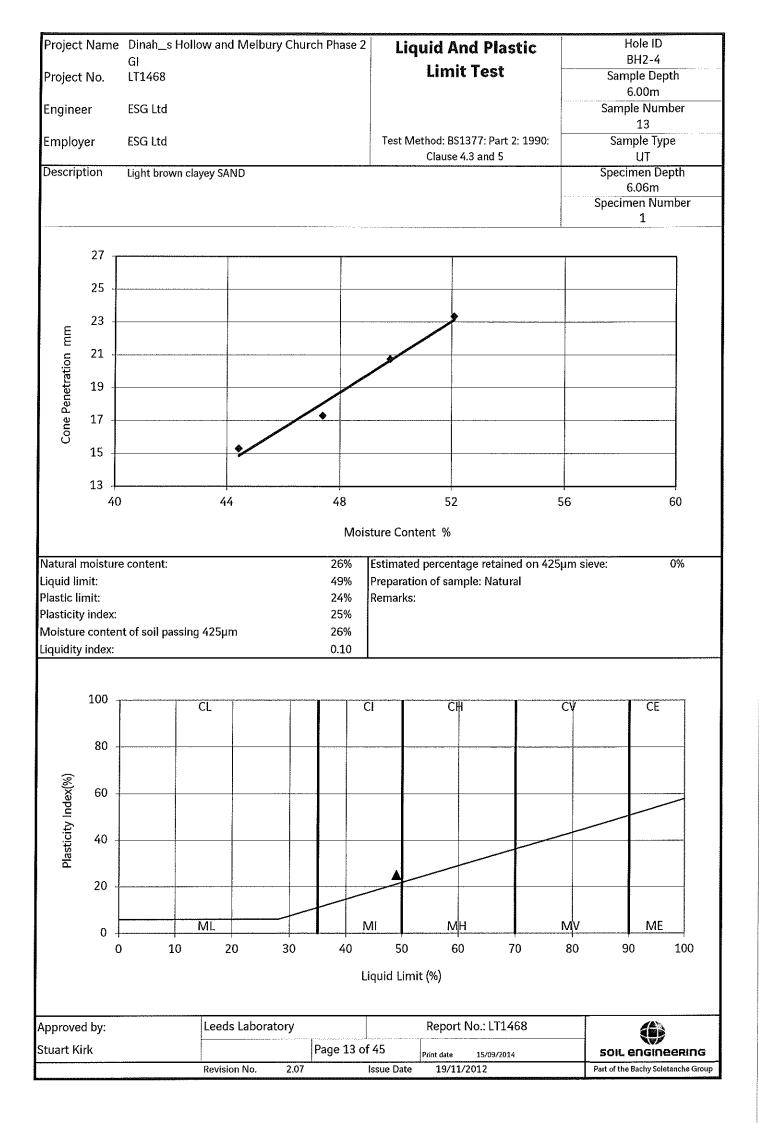

Project Name	GI	Hollo	ow and		Clas				Test	ts										
Project No.	LT1468									Su	mn	nary	1							
Engineer	ESG Ltd																			
Employer	ESG Ltd																			
				ε		itent			<u>i</u> ž			Τ	ε	əğe		Pa	rticle	size		-
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	Bulk Density	m∕bM bry Density	Particle Density	% Liquid Limit	% Plastic Limit	% Plastic Index	« Passing 425μm	% Linear Shrinkage	% Clay	% Silt	% Sand	% Gravel	% Cobbles	
BH2-1	3.00	7	ит	3.10	01	19				32	15	17	42	70	70	70	10	70	70	$\left \right $
BH2-1	6.00	13	ит	6.10	01	15			·	31	16	15	73							
BH2-2	3.50	9	ws	3.50	01		-								11	7	56	26	0	
BH2-2	6.00	12	u	6.27	01	23	-			41	23	18	100							
BH2-2	7.50	16	u	7.55	01	21				32	24	8	100							
BH2-2	7.50	17	WS (B)	7.50	01	21				34	NP	NP	100							
BH2-2	7.50	17	WS (B)	7.50	02										10	11	80	0	0	
BH2-3	3.50	8	D	3.50	01	22				37	23	14	100							
BH2-4	1.70	5	WS (B)	1.70	01	15				22	18	4	86							
BH2-4	5.00	11	D	5.00	01	23				40	23	17	100							
BH2-4	6.00	13	ит	6.06	01	26				49	24	25	100				1			
BH2-5	2.55	6	D	2.55	01	26				35	21	14	65							
BH2-5	4.50	10	uт	4.60	01	28				42	24	18	100							
BH2-5	8.50	19	ws	8.50	01	21				41	18	23	100		-					
BH2-6	1.20	2	ит	1.20	01	20				34	18	16	99							
BH2-7	1.20	2	ит	1.37	01	22				33	21	12	100							
BH2-7	4.50	9	ит	4.65	01	20				34	22	12	100							
							End													
				Labourt						<u> </u>		. 1 ***								
oproved by: uart Kirk		-	Leeas	Laborator		Page	3 of 4	5 ssue D	P	rint date	rt No 11/201	5/09/20					L en		erin anche G	

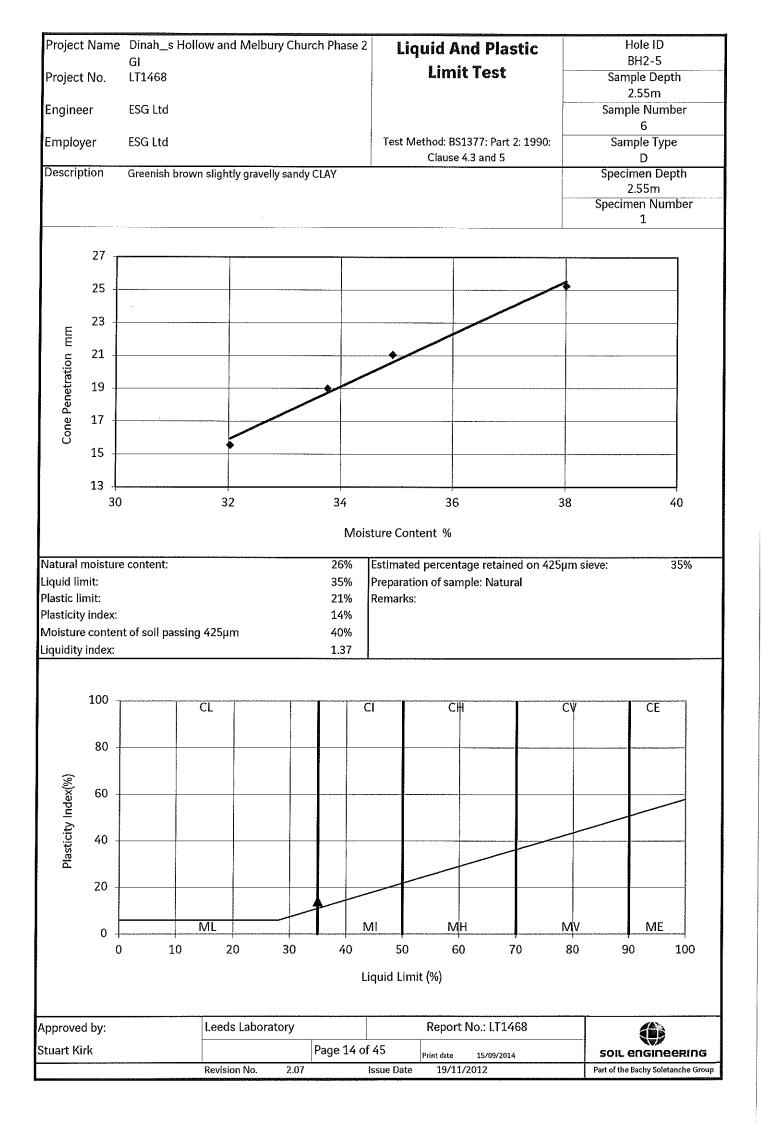

Project Name Project No.	Dinah_s H Phase 2 G LT1468										ary						
Engineer	ESG Ltd																
Employer	ESG Ltd																
		T							Triaxial		Co	nsol	Permeability		Shearbox		
Hole ID	Sample depth m	Sample no.	Sample type	Specimen depth m	Specimen no.	% Moisture Content	"u/Bulk Density	Type	c kPa	Ø	Type	m _v m²/MN	Type	K m/s	Type	c kPa	ø
BH2-2	4.50	9	uT	4.65	1	16	1.63	CD					<u> </u>	11/5	<u>F.</u>	Kra	
BH2-3	3.00	7	ит	3.23	1	26	2.01	CD									
BH2-3	6.00	12	ит	6.09	1	26	1.88	CD									
BH2-4	4.50	10	uт	4.55	1	27	1.97	CD									
BH2-4	6.00	13	ит	6.06	2	24	1.93	CD									
BH2-5	4.50	10	UT	4.60	2.	32	1.85	CD									
BH2-7	1.20	2	ur j	1.43	2	22	1.81	CD									
BH2-7	4.50	9	ит	4.73	2	20	1.84	CD						····			
								End									
pproved by:			Leeds I	aboratory				R	eport N	lo.: LT:	1468						
tuart Kirk		Revisio	- NI-	3.03	^p age 4	of 45	e Date	P	rint date 23/11/2		09/2014			SOIL Part of the	engli	neeri	

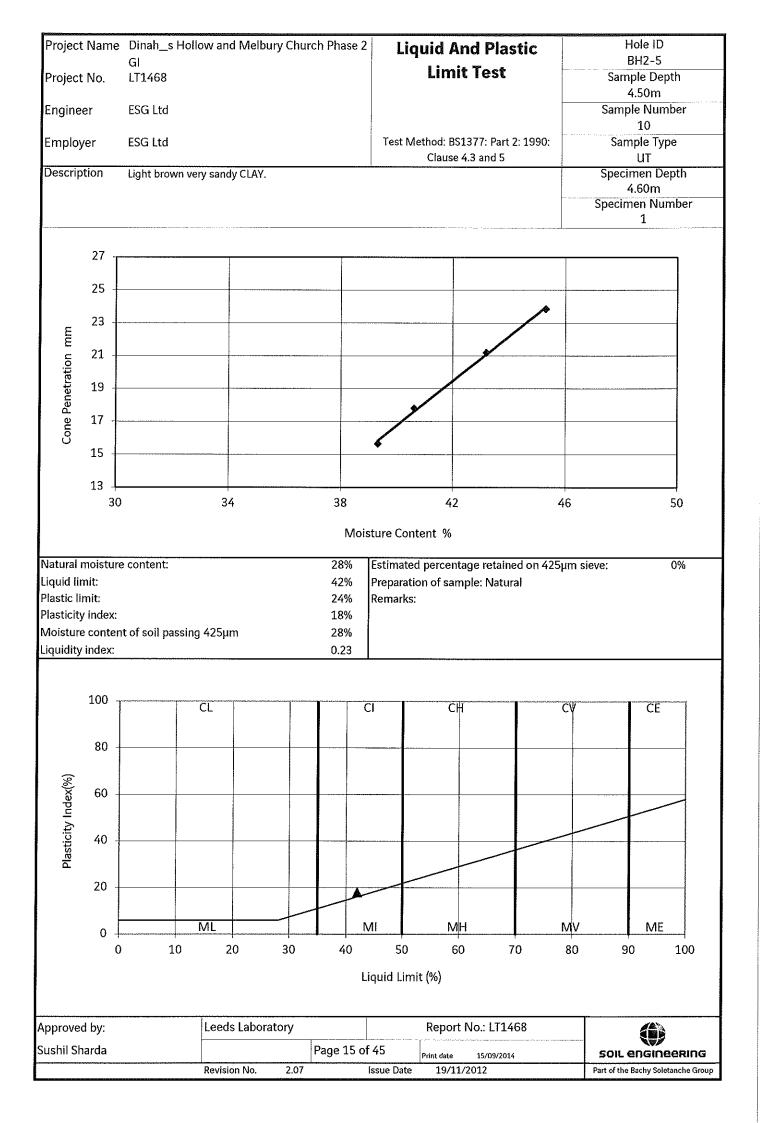


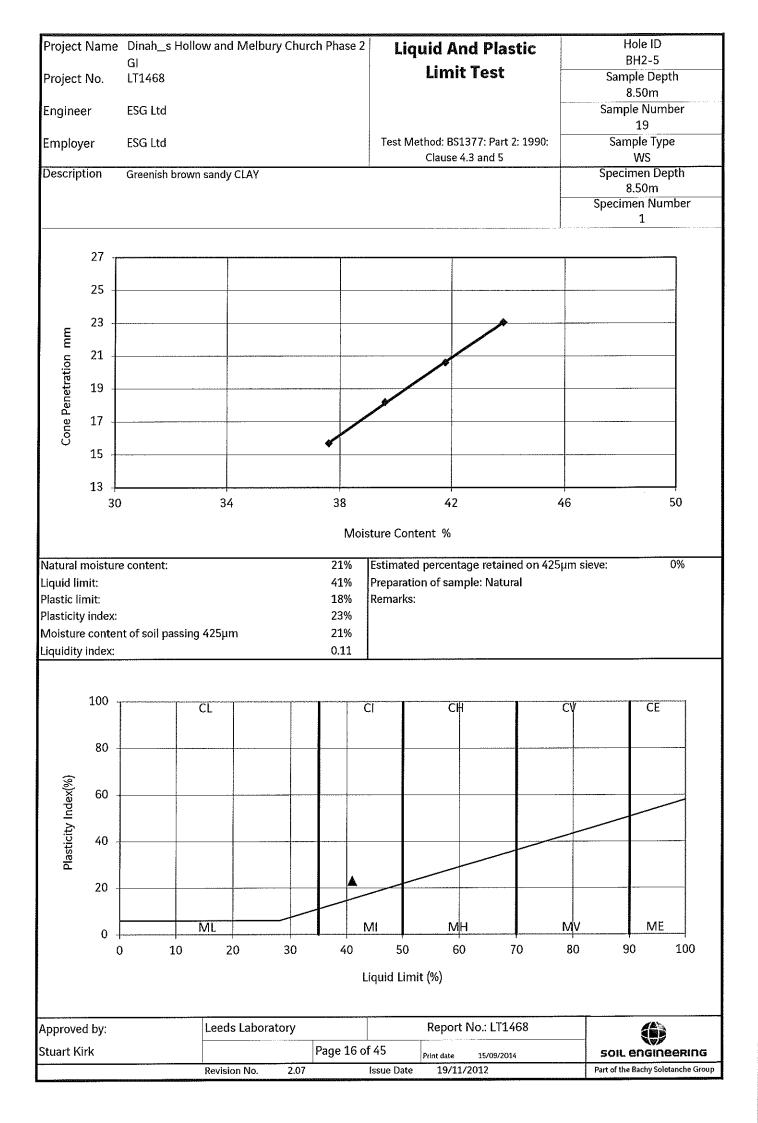


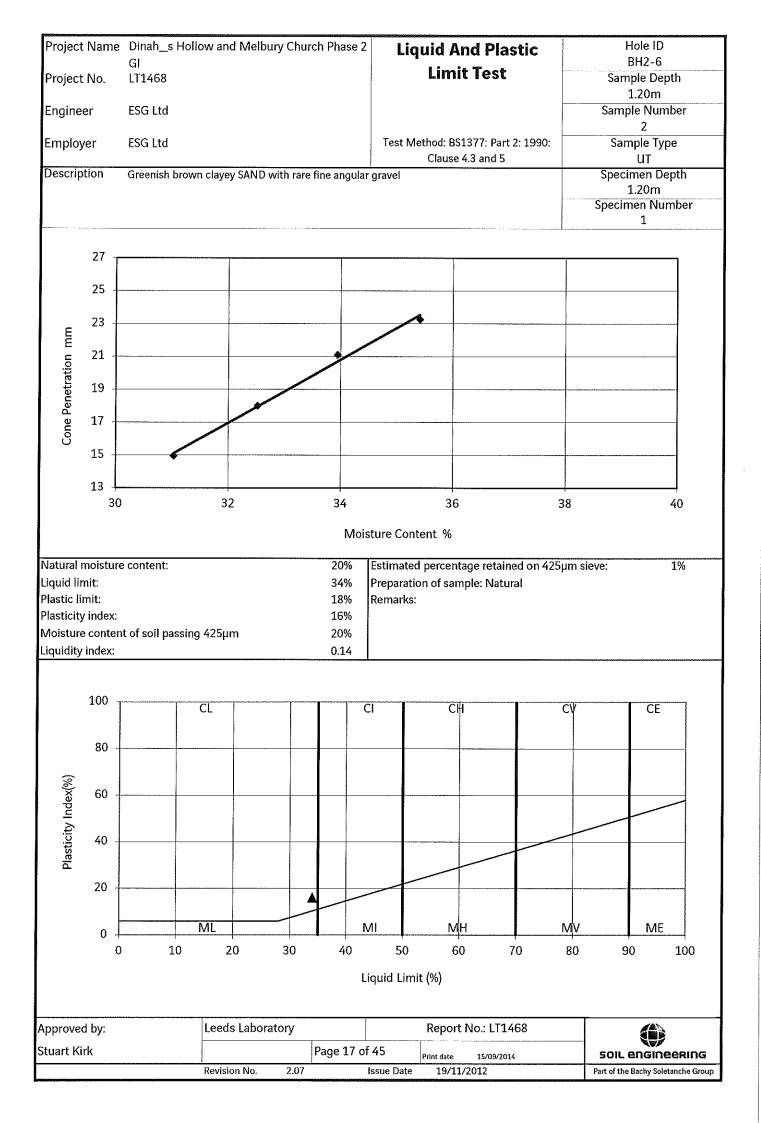


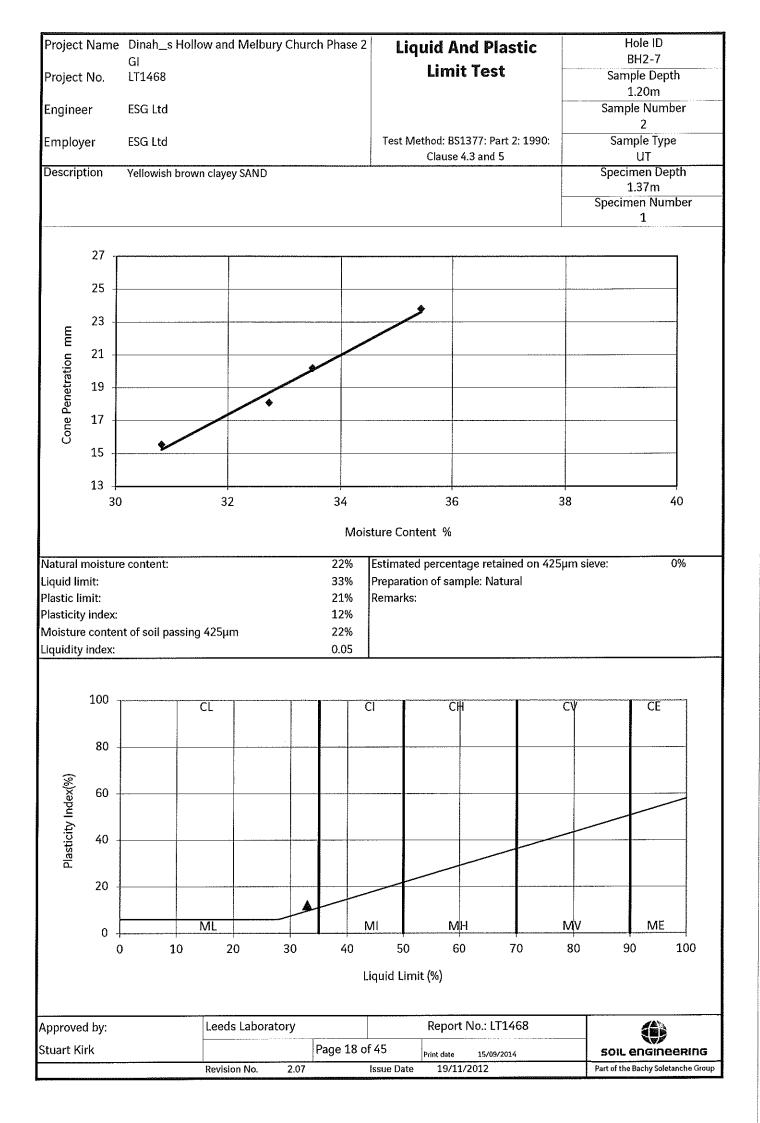


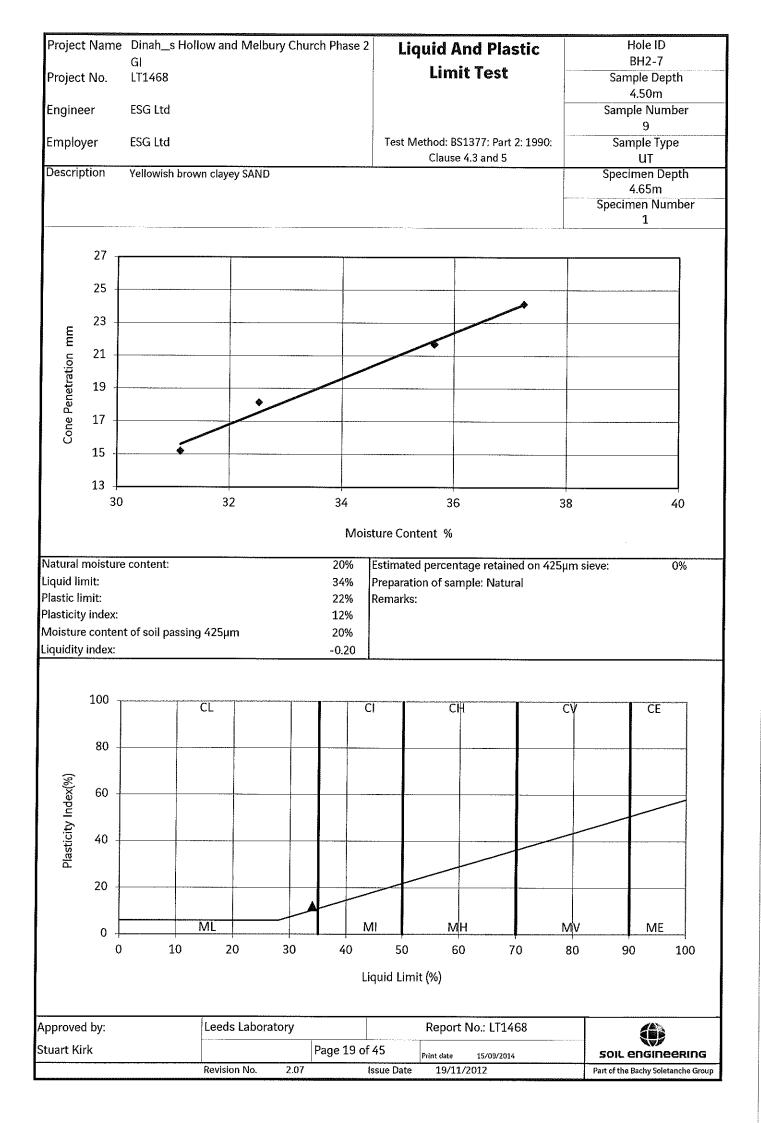


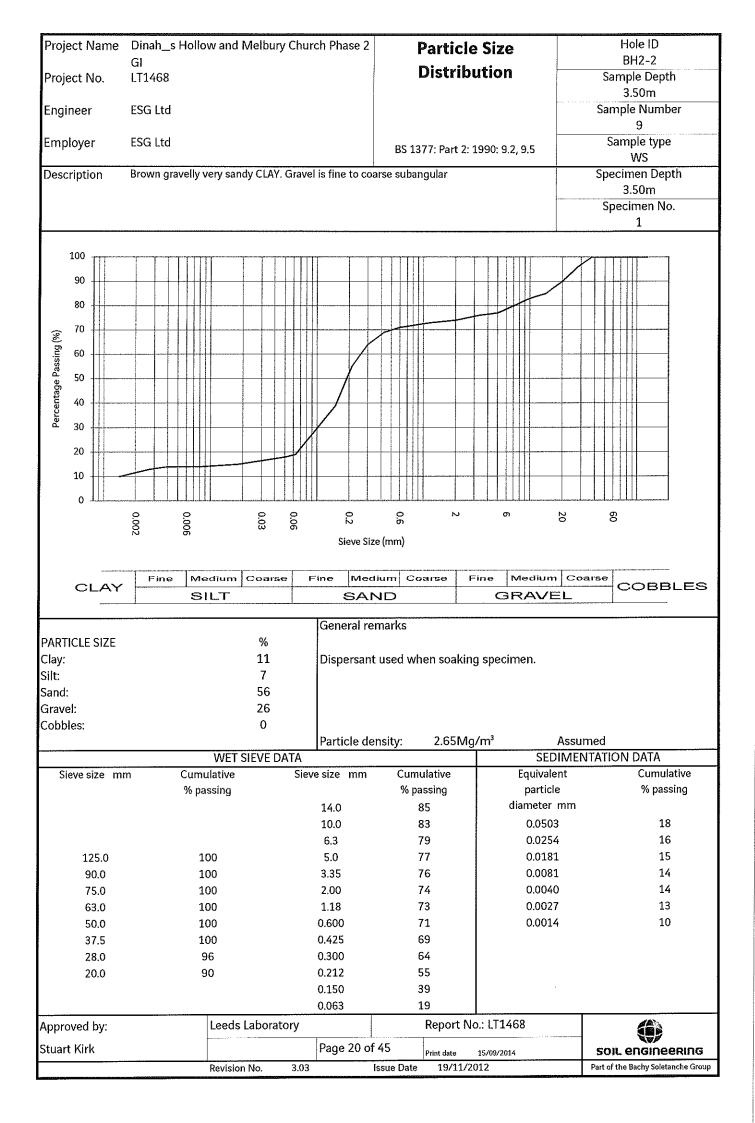


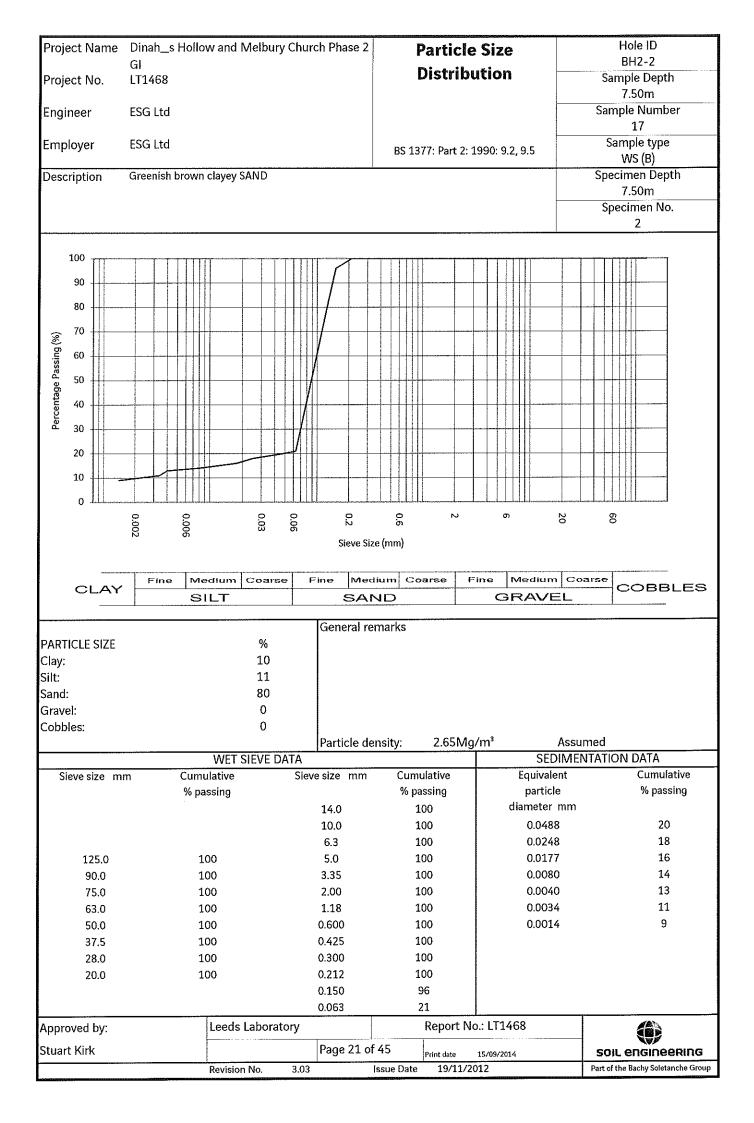


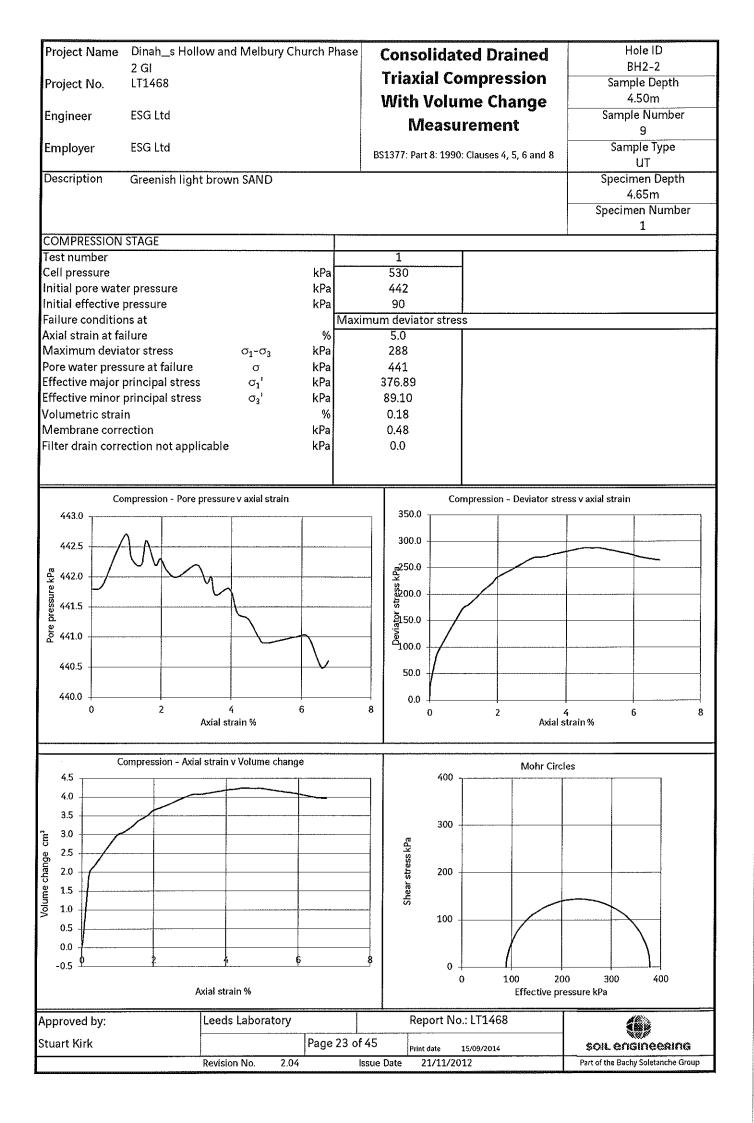


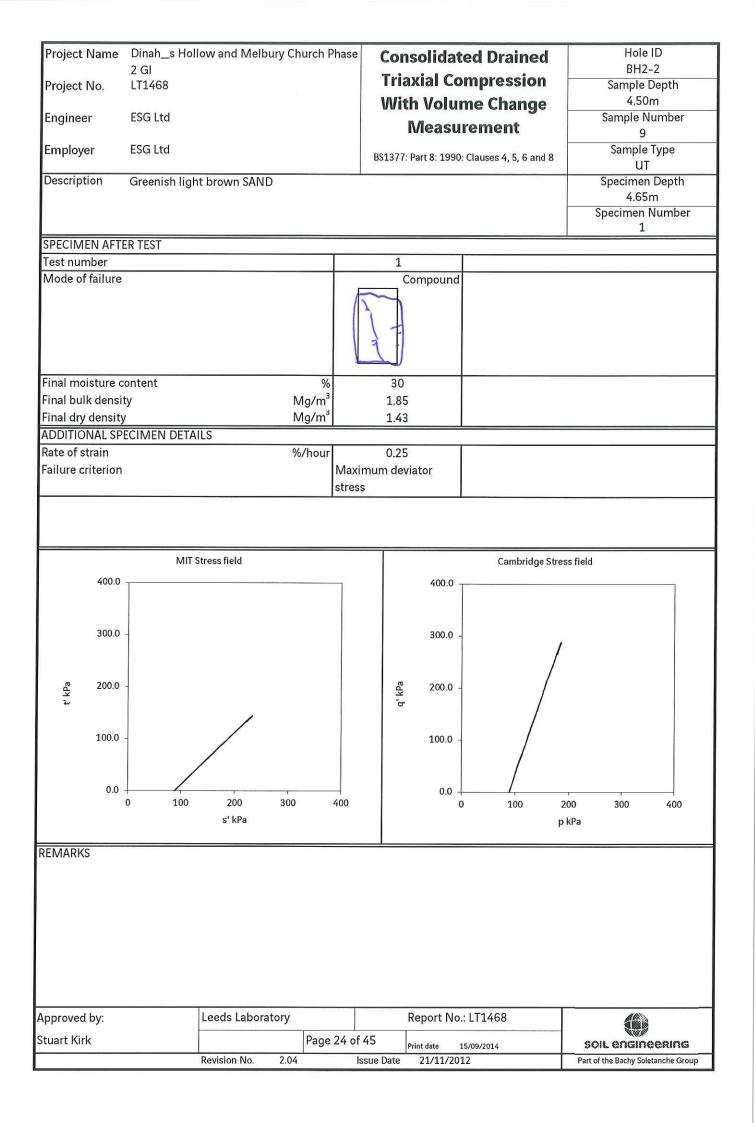


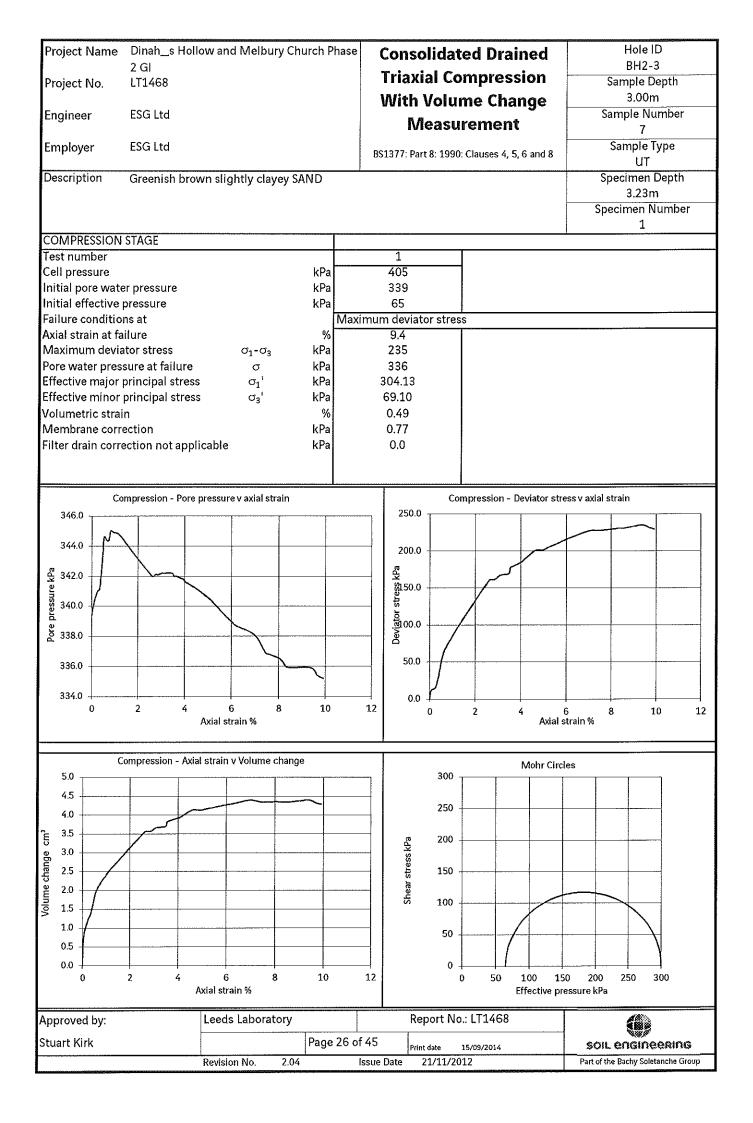




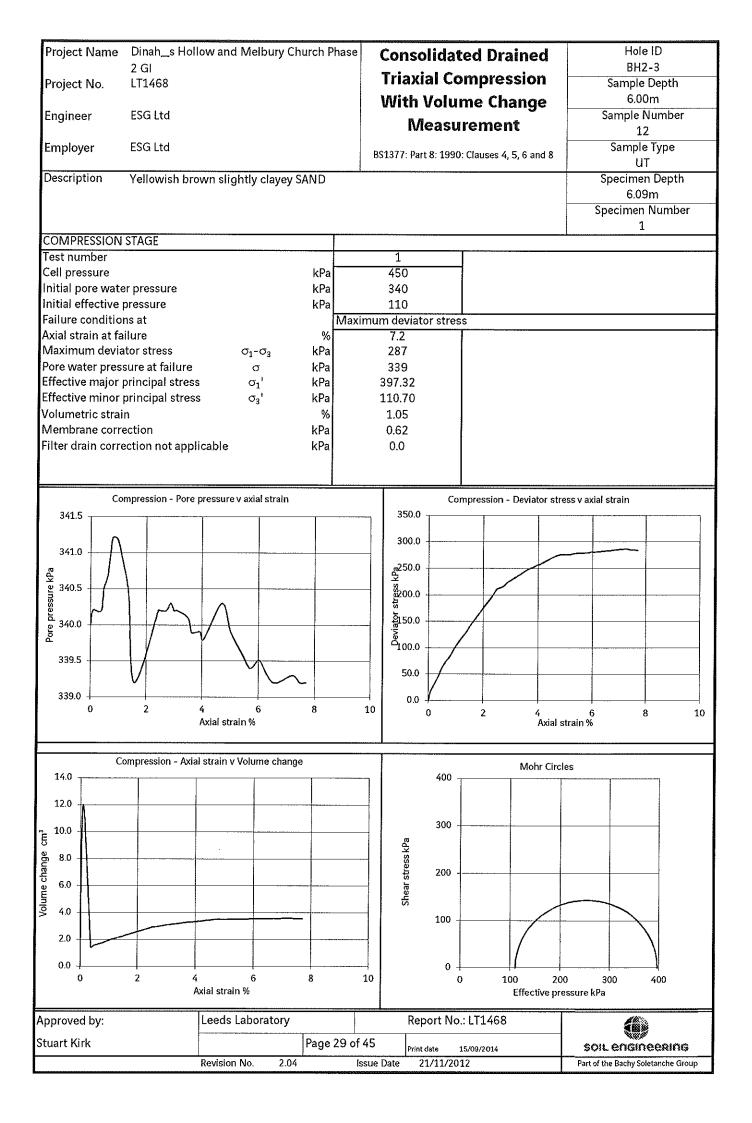


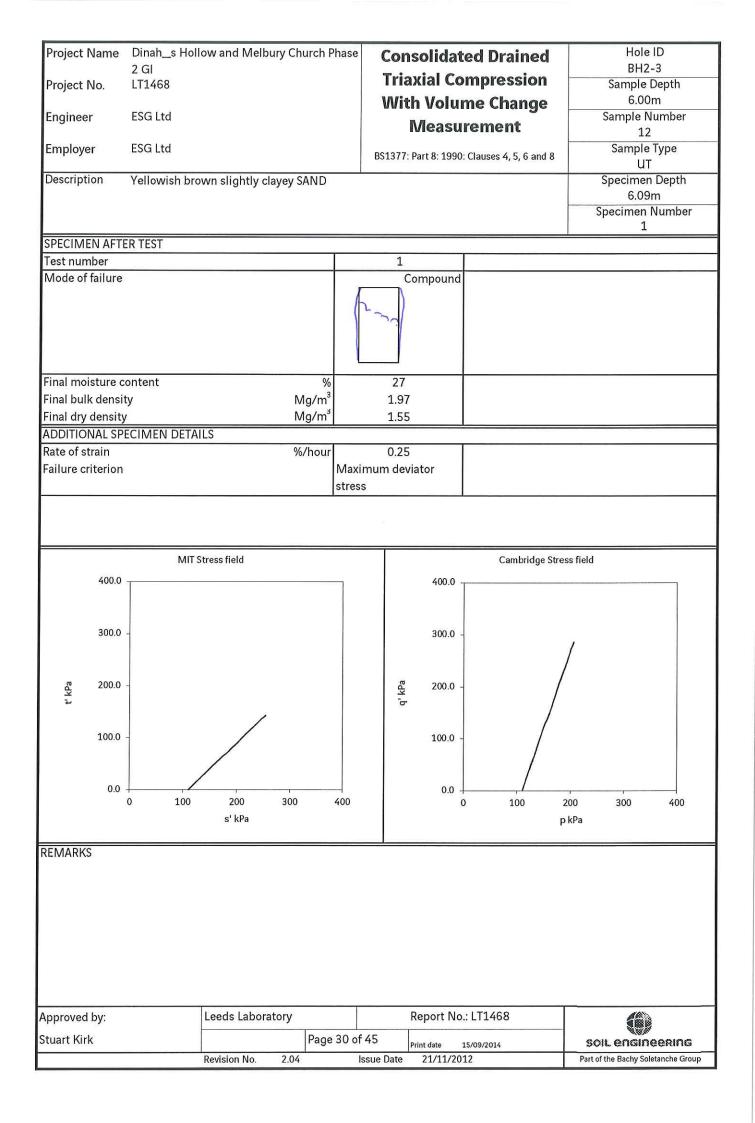


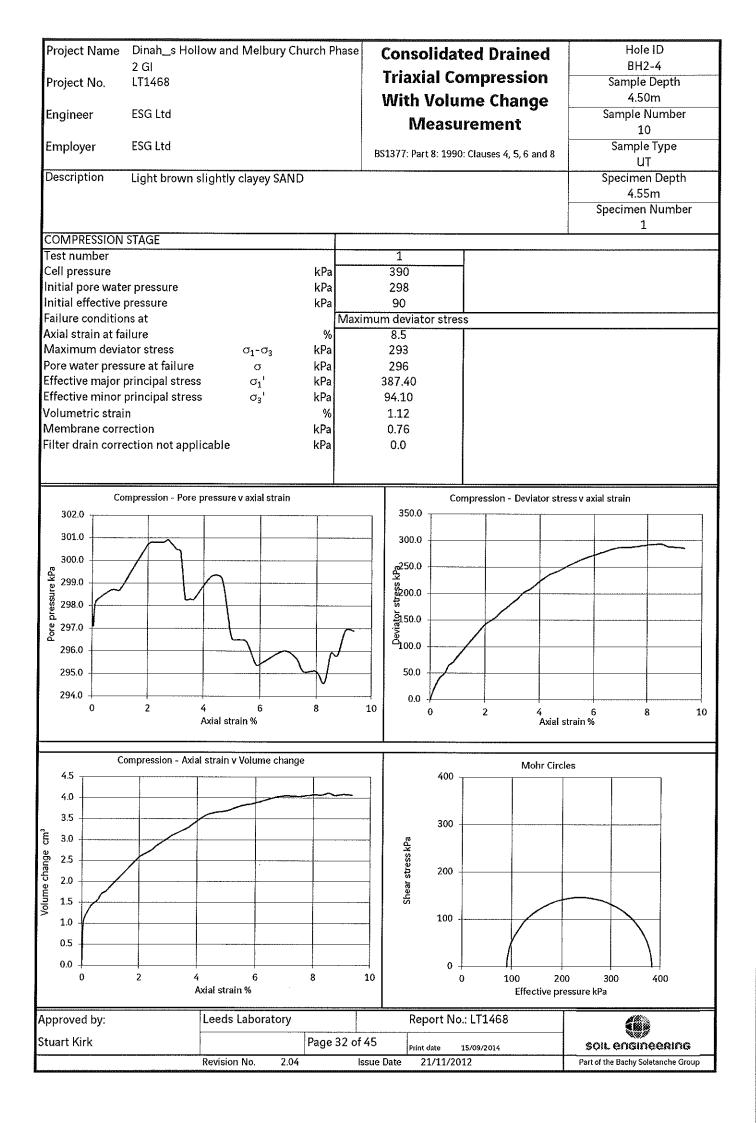


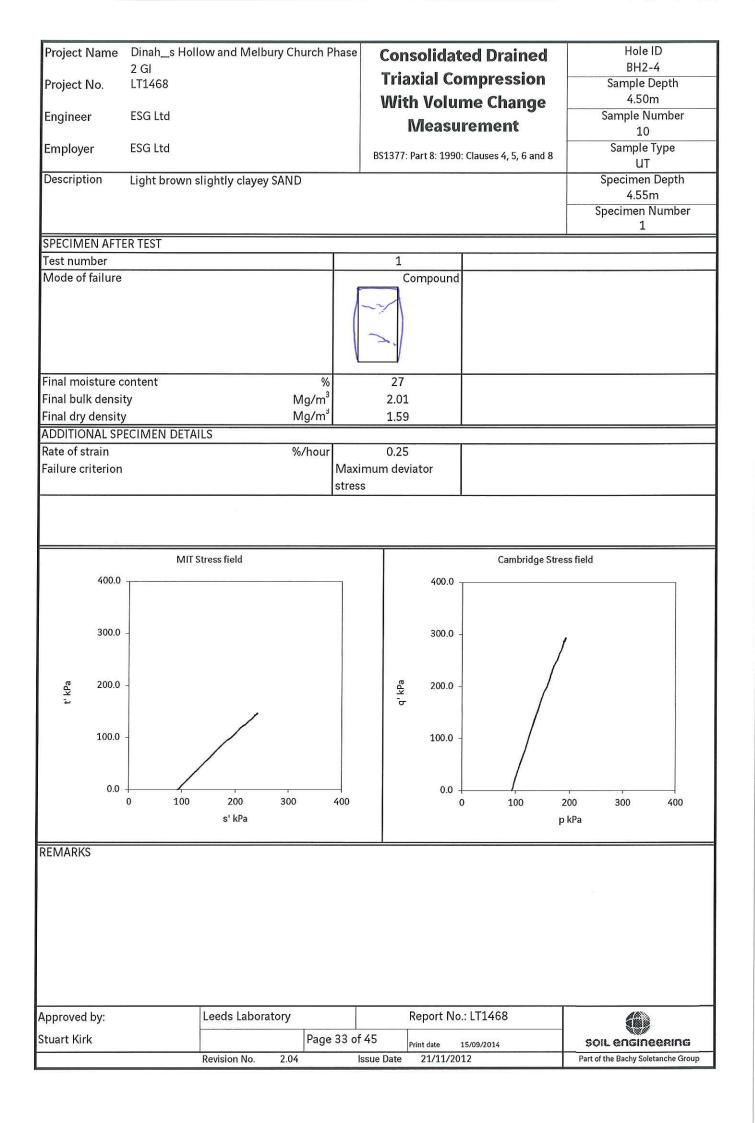


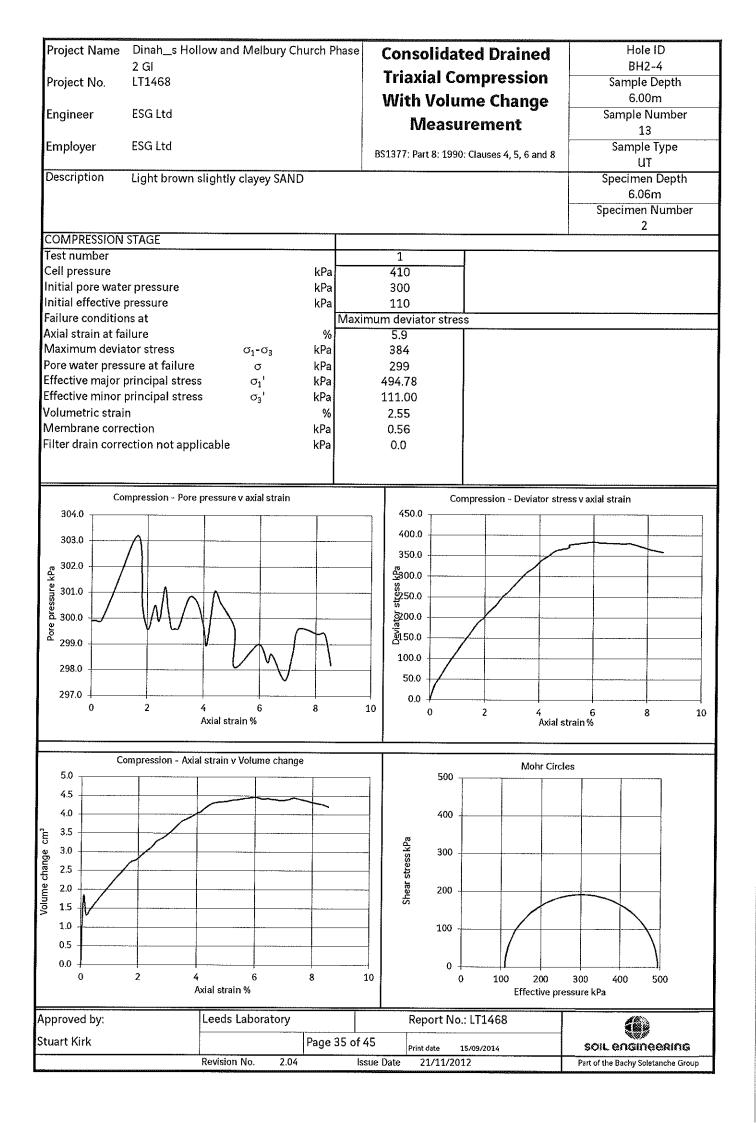
Project Name Dinah_s Hol 2 Gl	low and Melbury Church Phase	consonaacea branica	Hole ID BH2-2
Project No. LT1468		Triaxial Compression	Sample Depth
		With Volume Change	4.50m
Engineer ESG Ltd		Measurement	Sample Number 9
Employer ESG Ltd		BS1377: Part 8: 1990: Clauses 4, 5, 6 and	8 Sample Type UT
Description Greenish light	brown SAND		Specimen Depth
, , , , , , , , , , , , , , , , , , , ,			4.65m
			Specimen Number
PECIMEN INITIAL DIMENSIC			1
est number	////	1	
ipecimen diameter	mm	103.25	
pecimen length	mm	177.00	
)ensity	Mg/m ³	1.63	
Aoisture content	%	16	
Dry density	Mg/m ³	1.40	
ATURATION STAGE	<u> </u>		<u> </u>
nitial pore water pressure	kPa	2.5	
aturated pore water pressure	kPa	490.6	
inal cell pressure	kPa	500	
value		0.962	
CONSOLIDATION STAGE			
ell pressure	kPa	530	
ack pressure	kPa	440	
ffective cell pressure	kPa	90	
nitial pore water pressure	kPa	515.4	
inal pore water pressure	kPa	441	
ore pressure dissipation	%	98.7	
vi	m²/year	3020.56 0.22	
n _{vi} PECIMEN AFTER CONSOLIDA	m²/MN	0.22	
Density	Mg/m ³	1.85	
Aoisture content	wg/m %	30	
Pry density	/₀ Mg/m³	1.43	
	turation	Consol	idation
1.2			
1.0		5.0	
0.8		E 10.0	
		2 10.0 9 00	
<u>عام 20</u> 8.0 (مع			
20.0		- 10.0 - 50 - 15.0 - 15.0	
0.4		20.0	
0.2		25.0	
0.0			
0 100 200	300 400 500	600 0 20	40 60 8
Ce	ell Pressure kPa	Root tin	ie mins
emarks: Specimen orie			
	dition for test Undisturb		
	h 50kPa increments with a diff	erential pressure of 10kPa	
Drainage from	both ends		
oproved by:	Leeds Laboratory	Report No.: LT1468	
			. 75, 500(69)
tuart Kirk	Page 22 o	f 45 Print date 15/09/2014	soit engineering

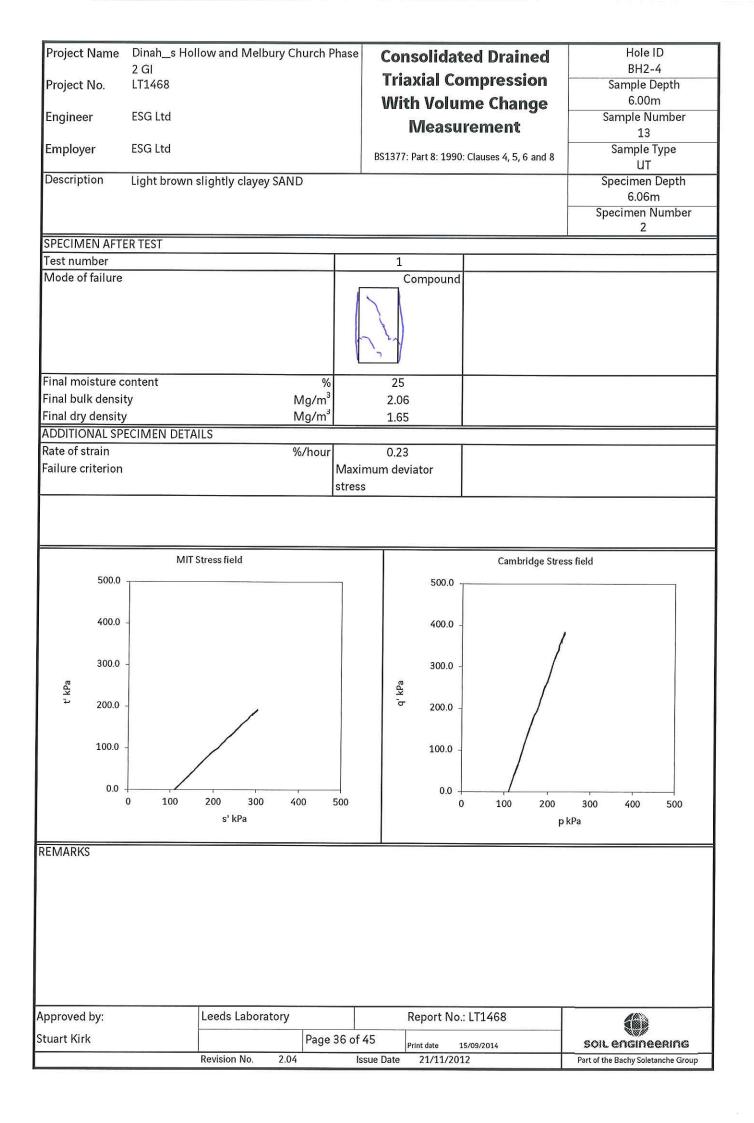


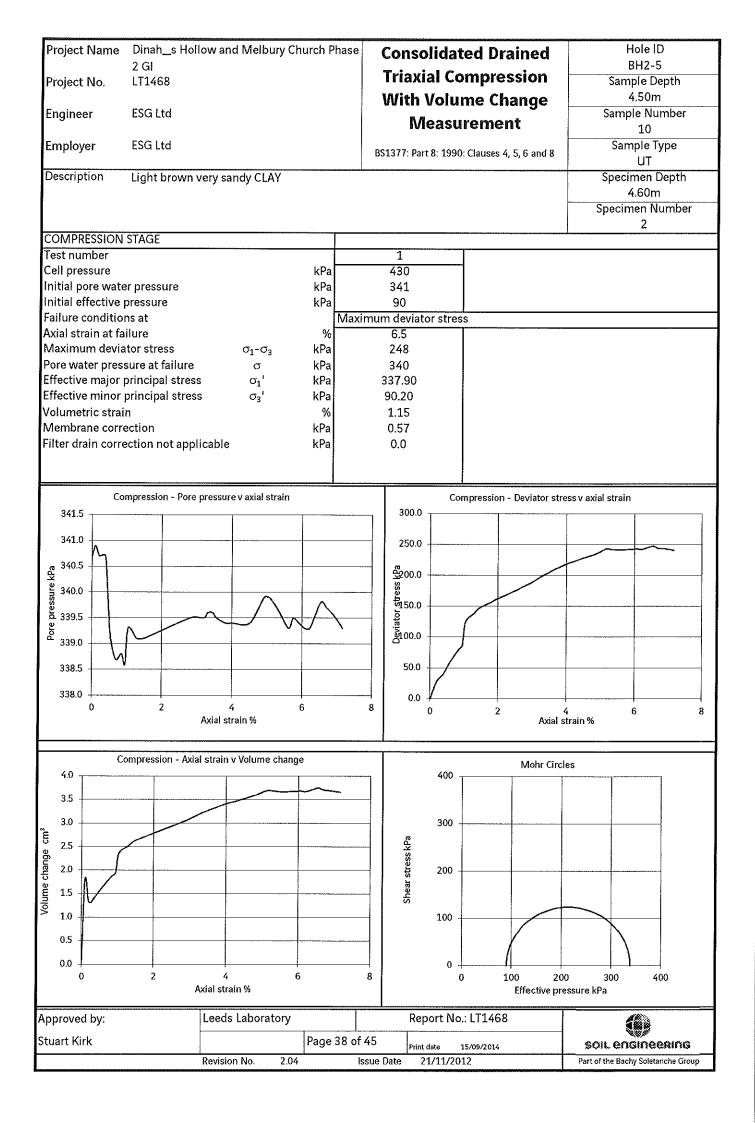

Project Name	Dinah_s Hollow and Melbury Church Phase 2 Gl LT1468		Consolida	ted Drained	Hole ID BH2-3	
Project No.				ompression	Sample Depth	
Engineer	ESG Ltd			me Change Irement	3.00m Sample Number	
Employer	ESG Ltd		Ivieasu	arement	7 Sample Type	
	230 Ltu		BS1377: Part 8: 199	0: Clauses 4, 5, 6 and 8	UT	
Description	Greenish brown	slightly clayey SAND			Specimen Depth 3.23m	
					Specimen Number	
SPECIMEN INITI	AL DIMENSION	IS			1	
lest number			1			
Specimen diame	ter	mm	101.88			
Specimen length	n	mm	196.63			
Density		Mg/m³	2.01			
Moisture conten	it	%	26			
Dry density		Mg/m³	1.60	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
ATURATION ST		I.n. I	0.5	Г		
nitial pore wate	•	kPa kPa	-0.5 389.4			
Saturated pore w Final cell pressu		kPa kPa	389.4 400			
-inal cell pressul 3 value	C	кга	400 0.992			
	N STAGE			<u> </u>		
Cell pressure		kPa	405			
Back pressure		kPa	340			
ffective cell pre	ssure	kPa	65			
nitial pore wate		kPa	400			
inal pore water		kPa	339.6			
ore pressure di	ssipation	%	100.7			
vi		m²/year	45.48			
n _{vi}		m²/MN	0.27			
SPECIMEN AFTE	RCONSOLIDAT		2.04	· · · · · · · · · · · · · · · · · · ·		
Density Moisture conten	+	Mg/m³ %	2.04			
Dry density	L	Mg/m ³	1.63			
	Satu	ration		Consolidati	on	
1.2						
1.0			5.0			
0.8			- 10.0 - + + + + + + + + + + + + + + + + + + +			
<u>a</u> []			l usu tro			
0.4			<u> </u>			
			> 20.0	\mathbf{N}		
0.2			25.0			
0.0			30.0			
0	100 200	300 400 Pressure kPa	500 0	10 2 Root time m		
				Koot ume m		
	Specimen orien					
	Specimen cond					
		50kPa increments with a diff	erential pressure of	10kPa		
	Drainage from h		_			
pproved by:		_eeds Laboratory	Report N	o.: LT1468		
tuart Kirk		Page 25 o	f 45 Print date	15/09/2014	SOIL ENGINEERING	
tuart Kirk Page 25 of 45 Print date 15/09/2014			Issue Date 21/11/2		Part of the Bachy Soletanche Group	

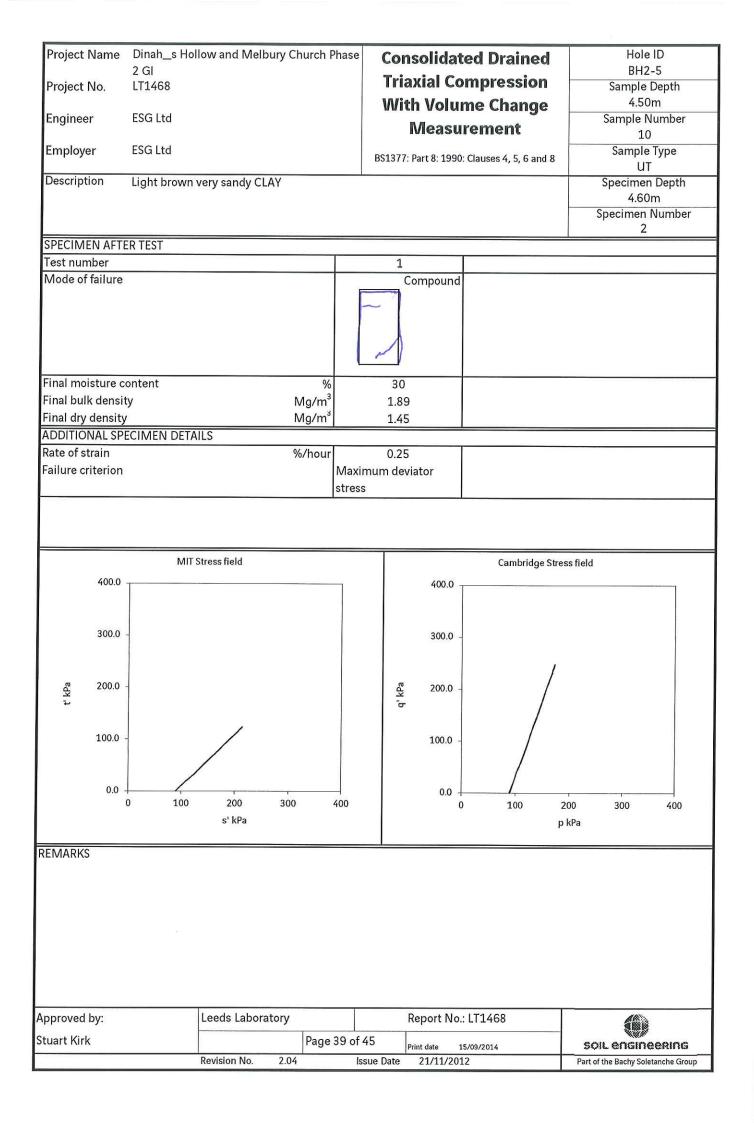

Project Name		ow and Melbur	y Church Ph	ase Con	solidate	d Drained	Hole ID BH2-3
Project No.	2 GI LT1468			Tria	axial Con	Sample Depth	
				2000 C	h Volum	3.00m	
Engineer	ESG Ltd				Measure	Sample Number 7	
Employer	ESG Ltd			BS1377	Part 8: 1990: C	lauses 4, 5, 6 and 8	Sample Type UT
Description	Greenish brow	wn slightly clay	ey SAND				Specimen Depth 3.23m Specimen Number
SPECIMEN AFTI	ER TEST						1
Test number				1			
Mode of failure					Compound		
Final moisture c	ontent		%	25			
Final bulk densi			Mg/m ³	2.04			
Final dry density			Mg/m³	1.63			
ADDITIONAL SP		LS					
Rate of strain			%/hour	0.25	;		
ailure criterion			r	Maximum dev stress			
300.0					300.0		
250.0					250.0 - 200.0 -	/	,
				a		/	
망 150.0 관 100.0	_	/		q' kPa	100.0		
50.0	-				50.0 -		
0.0	0 50 10	00 150 200 s' kPa	, 250 3	00	0.0		, , , , , , , , , , , , , , , , , , ,
REMARKS							
paravad bu		Lands Laborat	07/		Report No.	1 11 46 8	
approved by: tuart Kirk		Leeds Laborate		27 of 45	Report No.: Print date 15/	LT1468	

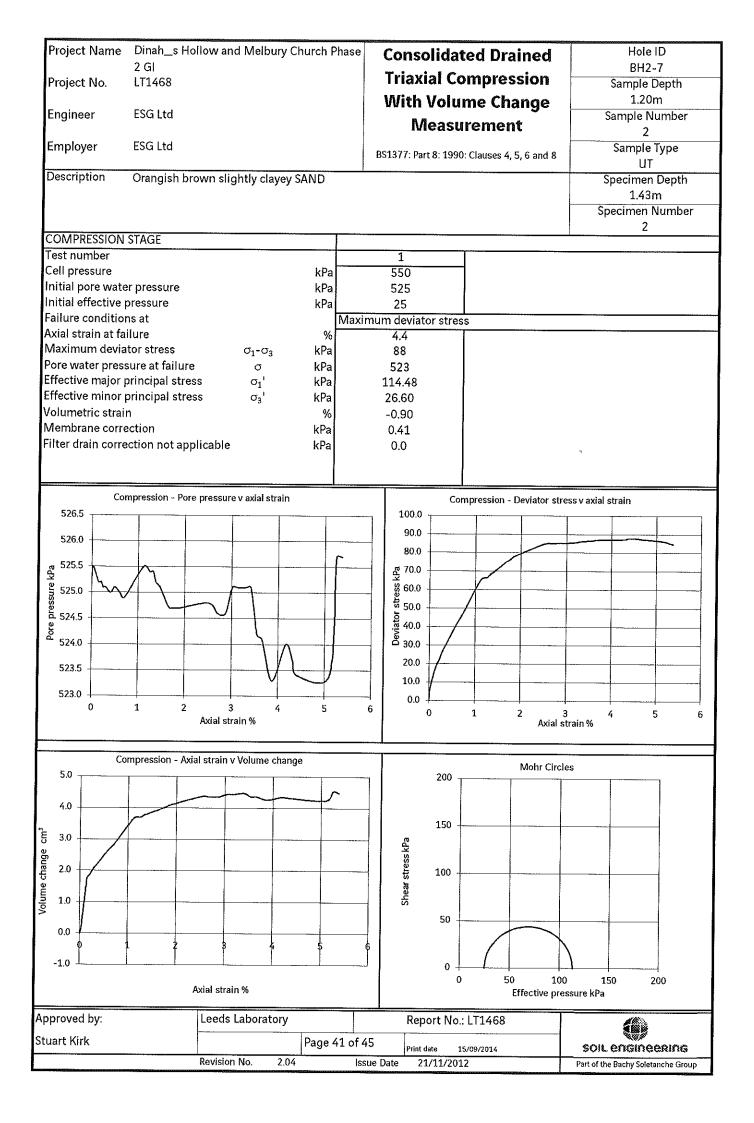

Project Name	Dinah_s Hollow and Melbur 2 Gl	y Church Phase		ted Drained	Hole ID BH2-3	
Project No.	LT1468			ompression	Sample Depth 6.00m	
Engineer	ESG Ltd			me Change	Sample Number	
-	500 Ltd		ivieasu	irement	12 Sample Type	
Employer	ESG Ltd		BS1377: Part 8: 1990): Clauses 4, 5, 6 and 8	UT	
Description	Yellowish brown slightly clayey	SAND			Specimen Depth	
					6.09m Specimen Number	
					1	
	AL DIMENSIONS		4	I		
Test number	*~~		1 103.33			
Specimen diame Specimen length		mm	198.50			
Density		mm Mg/m³	1.88			
Density Moisture conten	+	wg/m %	26			
Dry density	ι	Mg/m [*]	1.50			
SATURATION ST	AGE					
nitial pore wate	•	kPa	0.2			
Saturated pore w		kPa	388.4			
Final cell pressu	re	kPa	400			
B value			0.99			
	ISTAGE	L.D.,	450	1		
Cell pressure		kPa kPa	450 340			
Back pressure Effective cell pre	ceuro	kPa kPa	110			
nitial pore wate		kPa	431.8			
Final pore water	•	kPa	339.4			
Pore pressure di	-	%	100.7			
c _{vi}		m²/year	203.79			
m _{vi}		m²/MN	0.27			
	R CONSOLIDATION			1		
Density		Mg/m³	1.96			
Moisture conten	t	% Mg/m⁴	27 1.54			
Dry density		wg/m	1,34			
1.2	Saturation		0.0	Consolidat	ion	
2.12						
1.0			5.0			
			10.0			
0.8			- ਵ 15.0			
<u>u</u>			g 20.0			
an B value			- 5 일 25.0			
0.4						
0.2			35.0			
0.2			40.0			
0.0			45.0			
0	100 200 300	400	500 0		20 30 40	
	Cell Pressure kPa			Root time n	nins	
	Specimen orientation Vert		E			
	Specimen condition for test	Undisturb				
	Saturation with 50kPa increm	nents with a diff	erential pressure of	10kPa		
	Drainage from both ends					
Approved by:	Leeds Laborat	ory	Report N	o.: LT1468		
ituart Kirk		Page 28 o	f 45 Print date	15/09/2014	soil engineering	
ituart Kirk Page 28 of 45 Print date 15/09/2014						

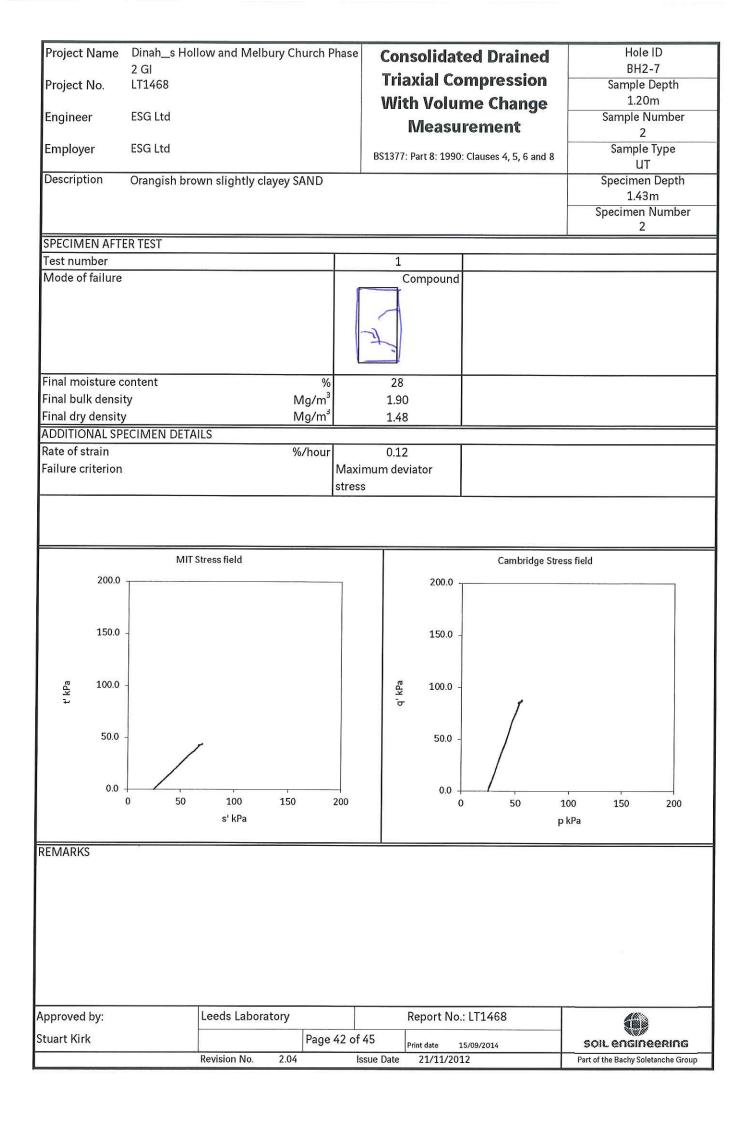


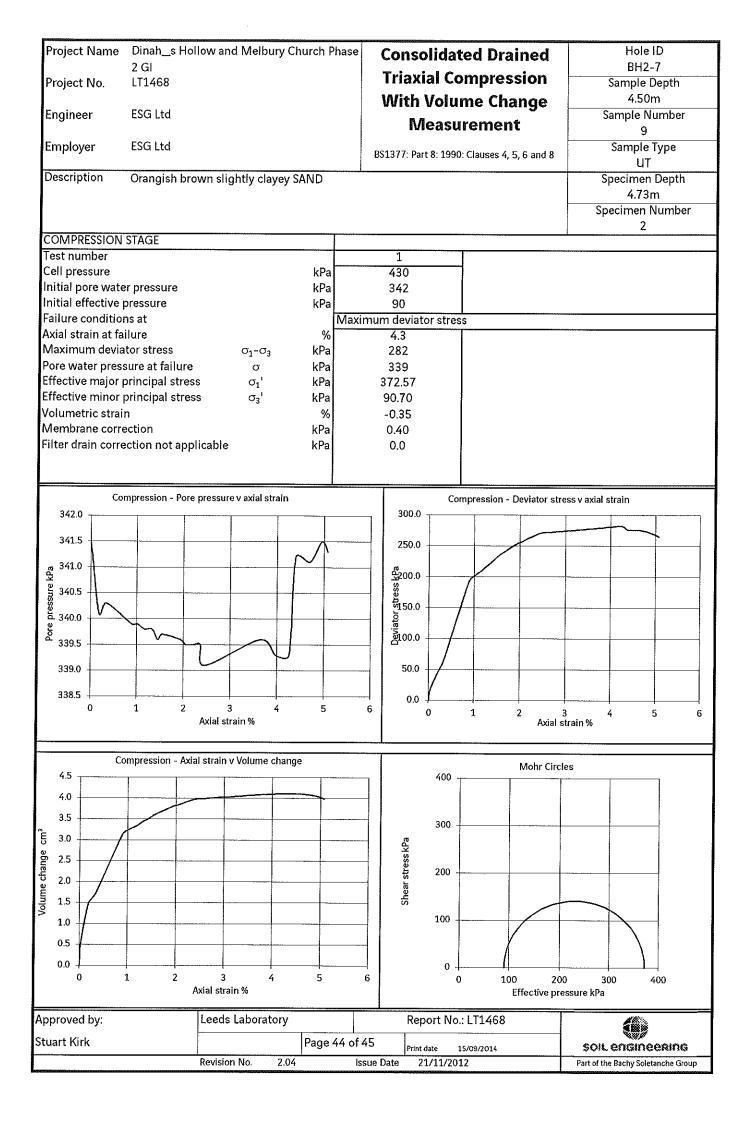

	Dinah_s Hollo 2 Gl	w and Melbury Church Pha		idated Drained	Hole ID BH2-4	
	LT1468			l Compression	Sample Depth	
			With V	olume Change	4.50m	
Engineer	ESG Ltd			asurement	Sample Number	
Employer	ESG Ltd				10 Sample Type	
Employer	LOG LIQ		BS1377: Part (8: 1990: Clauses 4, 5, 6 and 8	UT	
Description	Light brown slig	htly clayey SAND			Specimen Depth	
					4.55m Specimen Number	
					specimen Number	
SPECIMEN INITI	AL DIMENSION	IS			-	
Test number			1			
Specimen diame	ter	mm	102.13			
Specimen length	I	mm	195.80			
Density		Mg/m³	1.97			
Moisture conten	t	%	27			
Dry density		Mg/m³	1.55			
SATURATION ST						
nitial pore water	•	kPa	0.3			
Saturated pore w	•	kPa I-D-	288			
Final cell pressur 3 value	e	kPa	300 0, 9 58			
	ISTACE		8CE.U			
Cell pressure	STACE	kPa	390			
Back pressure		kPa	300			
Effective cell pres	ssure	kPa	90			
nitial pore water		kPa	371.2			
inal pore water		kPa	297.9			
Pore pressure dis	-	%	102.9			
- Svi		m²/year	289.08			
m _{vi}		m²/MN	0.25			
SPECIMEN AFTEI	R CONSOLIDAT					
Density		Mg/m³	2.01			
Moisture content	t	%	28			
Dry density		Mg/m³	1.57			
4.3	Satı	iration		Consolidat	tion	
1.2			0.0			
1.0			5.0			
1.0						
0.8			10.0			
			15.0			
B.0.6 B.0.9			char char			
<u>м́</u> /			Ĕ 20.0			
0.4			Š			
			25.0			
0.2			30.0		···	
0.0 / 50	100 15	0 200 250 300	35.0 350	0 10		
0 50		Pressure kPa	350	Root time n		
	Specimen orier		wheed			
	Specimen cond			ing of 10kDa		
		50kPa increments with a d	imerential pressu	ILE OT TOKLA		
	Drainage from I					
pproved by:		Leeds Laboratory		ort No.: LT1468		
tuart Kirk		Page 31	of 45	ate 15/09/2014	soit ensineering	
		Revision No. 2.04		/11/2012	Part of the Bachy Soletanche Group	




	Dinah_s Hollow and N 2 Gl	felbury Church Phase	Consolidated Drained Triaxial Compression		Hole ID BH2-4 Sample Depth 6.00m
Project No.			F		
Engineer				ime Change urement	Sample Number
Employer	ESG Ltd			0: Clauses 4, 5, 6 and 8	13 Sample Type
Description	Light brown slightly clay	ey SAND			UT Specimen Depth
					6.06m Specimen Number
SPECIMEN INITI	AL DIMENSIONS				2
lest number			1		
Specimen diame	ter	mm	102.23		
Specimen length		mm	194.40		
Density		Mg/m ³	1.93		
Moisture conten	t	%	24		
Dry density		Mg/m³	1,55		
ATURATION ST	IGE	····			
nitial pore water	-	kPa	1.8		
aturated pore w	ater pressure	kPa	289.8		
inal cell pressur		kPa	300		
3 value			0.966		
ONSOLIDATION	I STAGE			······································	
Cell pressure		kPa	410		
Back pressure		kPa	300		
ffective cell pres	ssure	kPa	110		
nitial pore water	pressure	kPa	396.8		
inal pore water	oressure	kPa	300		
ore pressure dis	sipation	%	100.0		
vi		m²/year	148.37		
n _{vi}		m²/MN	0.38		
PECIMEN AFTER	R CONSOLIDATION				
Density		Mg/m³	2.03		
/loisture content		%	26		
ry density		Mg/m⁴	1.61		
	Saturation			Consolidati	on
1.2			0.0		
1.0			10.0		
			20.0		
0.8			2000 U 20		
s /			l g 30.0 + -		
			40.0		
0.4			50.0		
0.2			60.0		
0.0			700		
0.0 + + + + + + + + + + + + + + + + + +	100 150 200) 250 300 5	- 70.0 150 0	10 20	
	Cell Pressure k			Root time mi	
emarks: S	pecimen orientation	Vertical	I		
	pecimen condition for		ed		
	aturation with 50kPa ir			10kPa	
	rainage from both end				
proved by:	Leeds La		Report No	VIT1469	
	LCCUS Ldi			LI 1400	
uart Kirk		Page 34 of	45 Print date	15/09/2014	soit engineening
	Revision No). 2.04 k	sue Date 21/11/20	12	Part of the Bachy Soletanche Group




Project Name	Dinah_s Hollow and Mel	bury Church Phase	Consolida	ted Drained	Hole ID BH2-5
Project No.	2 GI LT1468		Triaxial Co	ompression	Sample Depth
Project No.). L11408		i i i i i i i i i i i i i i i i i i i		4.50m
Engineer	ESG Ltd			me Change	Sample Number
_			Measu	irement	10
Employer	ESG Ltd		BS1377: Part 8: 199	0: Clauses 4, 5, 6 and 8	Sample Type UT
Description	Light brown very sandy CLA	Ŷ	S		Specimen Depth 4.60m
					Specimen Number
	********				2
	AL DIMENSIONS				
Test number			1		
Specimen diame		mm	103.00		
Specimen length	1	mm	196.80		
Density		Mg/m ³	1.85		
Moisture conter	IC	%	32		
Dry density	ACE	Mg/m³	1.41		
nitial pore wate		kPa	1.4	1	
aturated pore wate	-	кРа kPa	1.4 388.1		
inal cell pressu	-	кРа kPa	388.1 400		
B value		Kra	0.994		
	N STAGE		0.007		
Cell pressure		kPa	430		
ack pressure		kPa	340		
ffective cell pre	ssure	kPa	90		
nitial pore wate		kPa	418.6		
inal pore water		kPa	340.1		
ore pressure dis	-	%	99.9		
vi		m²/year	524.73		
n _{vi}		m²/MN	0.29		
	R CONSOLIDATION				
Density		Mg/m³	1.90		
Aoisture conten	t	%	33		
Ory density		Mg/m³	1.43		
1.2	Saturation			Consolidati	on
1.2					
1.0			5.0		
			10.0		
0.8					
9 /			aug aug		
B value			- 5 20.0		
			25.0		
0.4					
			30.0		
0.2			35.0		
0.0			40.0		
	100 200 300	400 !		10 2	0 30 44
	Cell Pressure kPa			Root time mi	ns
emarks:	Specimen orientation V	ertical			
	Specimen condition for tes		ed		
	Saturation with 50kPa incr			10kPa	
	Drainage from both ends		a on sine prosoure of	Loniu	
proved by:	Leeds Labo	raton	Report N	o.: LT1468	ABX.
		-	-	J LI 1700	
tuart Kirk		Page 37 of	45 Print date	15/09/2014	soit engineering
	Revision No.			012	



Project Name		nd Melbury Church Phase	^a Consolida	ated Drained	Hole ID
Drojact NI-	2 GI LT1468			ompression	BH2-7
Project No.	L11400			ume Change	Sample Depth 1.20m
Engineer	ESG Ltd			ume Change urement	Sample Number
Employer	ESG Ltd		BS1377: Part 8: 199	90: Clauses 4, 5, 6 and 8	Sample Type UT
Description	Orangish brown slig	htly clayey SAND			Specimen Depth
					1.43m Specimen Number
SPECIMEN INITI	AL DIMENSIONS				2
Test number			1	<u></u>	
Specimen diame	ter	mm	102.28		
Specimen length		mm	197.27		
Density		Mg/m ³	1.81		
Vioisture conten	t	%	22		
Dry density		Mg/m ³	1.48		
SATURATION ST	AGE		······································		
nitial pore water		kPa	1.3		
Saturated pore w		kPa	544.2		
inal cell pressur		kPa	550		
3 value			0.996		
CONSOLIDATION	I STAGE				
Cell pressure		kPa	550		
Back pressure		kPa	525		
Effective cell pres		kPa	25		
nitial pore water		kPa	544.2		
inal pore water		kPa	525.2		
Pore pressure dis	sipation	%	99.0		
vi		m²/year	7.87		
n _{vi}		m²/MN	0.52		
	R CONSOLIDATION				
Density Aciature contant		Mg/m³	1.91		
Aoisture content Dry density		% Ma/m ³	28		
ay uchaily		Mg/m³	1.50	1	
1.2	Saturatio	n		Consolidati	on
			2.0		
1.0			4.0		
0.8					
				_	
ם.6 קור אס מ					
			6.0 H		
0.4					
0.2			14.0		
//			16.0		
0.0			18.0		
0 10			600 0	10 2	
	Cell Press	ure rra		Root time mi	ins
	pecimen orientatio		r		
	pecimen condition				
		Pa increments with a diff	erential pressure of	10kPa	
	Prainage from both				
oproved by:	Leed	s Laboratory	Report No	o.: LT1468	
uart Kirk		Page 40 of	F45		
uart Kirk Page 40 of 45 Print date 15/09/2014				15/09/2014	SOIL ENGINEERING

Project Name	Dinah_s Hollow and Melbu	ary Church Phase	Consolida	ted Drained	Hole ID BH2-7		
Project No.	2 GI LT1468		Triaxial Co	ompression	Sample Depth		
				Ime Change	4.50m		
Engineer	ESG Ltd			urement	Sample Number		
Employer	ESG Ltd		Tereduct		9 Sample Type UT		
спрюует			BS1377: Part 8: 199	0: Clauses 4, 5, 6 and 8			
Description	Orangish brown slightly claye	y SAND			Specimen Depth 4.73m		
					Specimen Number		
	AL DIMENSIONS				2		
Fest number	AL DIMENSIONS		1				
Specimen diame	ter	mm	103.13				
Specimen length		mm	196.70				
Density		Mg/m ³	1.84				
Moisture conten	t	%	20				
Dry density	•	Mg/m ³	1.54				
SATURATION ST	AGE			1			
nitial pore wate		kPa	3.52				
Saturated pore w	•	kPa	388.5				
Final cell pressu	•	kPa	400				
3 value			0.95				
CONSOLIDATION	I STAGE	-			nnen ninne en els de la company de la com		
Cell pressure		kPa	430				
Back pressure		kPa	340				
ffective cell pre	ssure	kPa	90				
nitial pore wate	pressure	kPa	414.1				
inal pore water	pressure	kPa	341.5				
Pore pressure dis	sipation	%	98.0				
Vi		m²/year	2817.10				
n _{vi}		m²/MN	0.27		······		
	R CONSOLIDATION						
Density		Mg/m³	1.94				
Moisture conten		%	23				
Dry density		Mg/m⁵	1.57				
10	Saturation			Consolidat	ion		
1.0			0.0				
0.9			5.0				
0.8							
0.7			- 글 ^{10.0}				
0.6			 ຊື່ 15.0				
B 0.5			- cr				
² 0.4							
0.3			Nolt				
			25.0				
0.2			30.0				
0.1			- \				
0.0			35.0				
0	100 200 300 Cell Pressure kPa	400	500 0	10 2 Root time m	20 30 40 Jins		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		tical	a d				
	Specimen condition for test	Undisturb		101-D			
	Saturation with 50kPa incre	nents with a diffe	rential pressure of	10kPa			
	Drainage from both ends				_		
oproved by:	Leeds Labora	tory	Report No	o.: LT1468			
					N##		
tuart Kirk		Page 43 of	45 Print date	15/09/2014	soit engineering		

Project Name	Dinah_s Hollow and Melbury Church Pha	^{se} Consolidated Drained	Hole ID
Project No.	2 Gl LT1468	Triaxial Compression	BH2-7 Sample Depth
rioject No.		With Volume Change	4.50m
Engineer	ESG Ltd	Measurement	Sample Number 9
Employer	ESG Ltd	BS1377: Part 8: 1990: Clauses 4, 5, 6 and 8	Sample Type UT
Description	Orangish brown slightly clayey SAND		Specimen Depth 4.73m
			Specimen Number 2
SPECIMEN AFTE	RTEST		Δ
Test number		1	
Vode of failure		Compound	
inal moisture c		25	
inal bulk densit	y Mg/m ³	1.96	
inal dry density	Mg/m ³	1.56	
	ECIMEN DETAILS		
Rate of strain	%/hour	0.25	
ailure criterion		aximum deviator ess	
	MIT Stress field	Cambridge Str	ess field
400.0		400.0	5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5
400.0 300.0		400.0	1
			,
300.0		300.0 -	,
300.0 - چ 200.0 - ب 100.0 - 0.0 -		300.0 - 300.0 - 200.0 - - - - - - - - - - - - - -	200 200 (00
300.0 - 200.0 - 200.0 - 100.0 - 0.0 -	0 100 200 300 400 s' kPa	$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	200 300 400 p kPa
300.0 - 200.0 - 100.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - 200.0 - 200.0 - 100.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - ♣ ₽ 100.0 - 0.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - [™] / ₂ 200.0 - [™] / ₂ 100.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - [™] / ₂ 200.0 - [™] / ₂ 100.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - [™] / ₂ 200.0 - [™] / ₂ 100.0 - 0.0 -		$ \begin{array}{c} 300.0 \\ \frac{\alpha_{y}}{\sigma} \\ \frac{\alpha_{y}}{\sigma} \\ 100.0 \\ 0.0 \\ 0 \\ 100 \end{array} $	
300.0 - 200.0 - 100.0 - 0.0 - C	s' kPa		
300.0 - 200.0 - 100.0 - 0.0 -		300.0	

TEST REPORT

Report No. EFS/144904 (Ver. 3)

ESG Bridgend Unit 15 Crosby Yard Wildmill Bridgend

Site: Dinahs Hollow

The 15 samples described in this report were registered for analysis by ESG on 09-Aug-2014. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 23-Sep-2014

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Analytical and Deviating Sample Overview (Pages 3 to 4) Table of Method Descriptions (Page 5) Table of Report Notes (Page 6) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Declan Burns

Operations Director Laboratory and Analytical Business Date of Issue: 23-Sep-2014

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. ESG accepts no responsibility for any sampling not carried out by our personnel.

	Units :	pH Units	mg/kg	mg/l	%]
	: Method Codes : Method Reporting Limits	PHSOIL	Sub016 50	Sub016 1.5	TSBRE1 0.005			+						+	
	UKAS Accredited :	Yes	Yes	Yes	0.005 No										
LAB ID Number CL/	Client Sample Description	pH units (AR)	^SO4 (acid sol)	^SO4 (H2O sol) mg/l	Total Sulphur.										
1421408	BH2-1 D 8 3.5	7.9	<50	<1.5	0.027										
1421409	BH2-2 D 4 1.7	7.2	70	5.8	0.033										
1421410	BH2-2 D 18 8.5	7.3	<50	8.6	0.030										
1421411	BH2-4 D 4 1.7	7.1	90	11.7	0.015										
1421412	BH2-4 D 8 3.5	7.0	<50	15.1	0.027										
1421413	BH2-4 D 14 6.5	7.0	<50	12.7	0.022										
1421416	BH2-1 UT 13 6.0	7.9	<50	323.1	0.023										
1421417	BH2-2 WS 12 5.0	7.2	<50	4.6	0.027										
1421418	BH2-3 D 6 2.55	7.0	<50	6.4	0.013										
1421419	BH2-5 D 4 1.7	6.9	<50	<1.5	0.010										
1421420	BH2-6 D 7 4.0	7.8	<50	5.6	0.010										
1421421	BH2-6 D 13 7.0	7.6	<50	2.2	0.021										
1421422	BH2-7 D 5 2.55	5.4	88	52.2	0.026										
1421423	BH2-7 D 10 5.0	5.8	<50	190.8	0.014										
1421424	BH2-5 D 7.50	7.3	<50	8.4	0.021										
	ESG 🔗		ent Name ESG Bridgend						Sam	ple Ana	alysis				
	invironmental Scientifics Group	Contact Mr A Putt							1			4			
	Bretby Business Park, Ashby Road								Date Prin				3-Sep-2014	-	
	Burton-on-Trent, Staffordshire, DE15 0YZ				Dina	hs Ho	wolld		Report N			E	FS/144904		
	Tel +44 (0) 1283 554400								Table Nu	umber			1		
	Fax +44 (0) 1283 554422							 							

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

CustomerESG BridgendSiteDinahs HollowReport NoS144904

Consignment No S42922 Date Logged 09-Aug-2014

	0144304						Repo	ort Du	e 21-	Aug-2	2014		
		MethodID	CustServ	Dep.Opt			ICPBRE	KONECL	KoneNO3	PHSOIL	Sub016		TSBRE1
ID Number	Description	Sampled	Report B	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	Magnesium (BRE)	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	pH units (AR)	^SO4 (acid sol)	^SO4 (H2O sol) mg/l	Total Sulphur.
01 // 404 400		15								✓	✓	✓	
CL/1421408	BH2-1 3.5	D											
CL/1421409	BH2-2 1.7	D											
CL/1421410	BH2-2 8.5	D											
CL/1421411	BH2-4 1.7	D											
CL/1421412	BH2-4 3.5	D											
CL/1421413	BH2-4 6.5	D											
CL/1421416	BH2-1 6.0	D											
CL/1421417	BH2-2 5.0	D											
CL/1421418	BH2-3 2.5	D											
CL/1421419	BH2-5 1.7	D		ļ	ļ								
CL/1421420	BH2-6 4.0	D											
CL/1421421	BH2-6 7.0	D											
CL/1421422	BH2-7 2.55	D											

BH2-7 2.55 D			
Note: For analysis where the scheduled turnaround is greater than the	ſ	Devia	ating Sample Key
holding time we will do our utmost to prioritise these samples. However, it		A	The sample was received in an inappropriate container for this analysis
is possible that samples could become deviant whilst being processed in		В	The sample was received without the correct preservation for this analysis
the laboratory.		С	Headspace present in the sample container
		D	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you wish			Sample processing did not commence within the appropriate holding time
to discuss how you would like us to proceed. If you do not respond within		F	Sample processing did not commence within the appropriate handling time
24 hours, we will proceed as originally requested.		Requ	ested Analysis Key
			Analysis Required
			Analysis dependant upon trigger result - Note: due date may be affected if triggered
			No analysis scheduled
			Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Sample Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

CustomerESG BridgendSiteDinahs HollowReport NoS144904

Consignment No S42922

Date Logged 09-Aug-2014

							Repo	ort Du	ie 21-	Aug-2	2014		
		MethodID	CustServ	Dep.Opt			ICPBRE	KONECL	KoneNO3	PHSOIL	Sub016		TSBRE1
ID Number	Description	Sampled	Report B	DO CI if pH<5.5	DO Mg if SO4(W)>3000	DO NO3 if pH<5.5	Magnesium (BRE)	Chloride:(2:1)	Nitrate (BRE 2:1): mg/l	pH units (AR)	^SO4 (acid sol)	^SO4 (H2O sol) mg/l	Total Sulphur.
										~	✓	✓	
CL/1421423	BH2-7 5.0	D											
CL/1421424	BH2-5 7.50	D											

Note: For analysis where the scheduled turnaround is greater than the	Deviating Sample Key
holding time we will do our utmost to prioritise these samples. However,	A The sample was received in an inappropriate container for this analysis
it is possible that samples could become deviant whilst being processed	B The sample was received without the correct preservation for this analysis
in the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should you	E Sample processing did not commence within the appropriate holding time
wish to discuss how you would like us to proceed. If you do not respond	F Sample processing did not commence within the appropriate handling time
within 24 hours, we will proceed as originally requested.	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
Where individual res	ilts are f aggle as Sebepotre figtes Notestates are may vary
of 6	EES/144004 Vor 3

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35℃	samples by high temperature combustion/infrared detection

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
- All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity. - Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes ChrysotileTR Denotes TremoliteCR Denotes CrocidoliteAC Denotes ActinoliteAM Denotes AmositeAN Denotes AnthophyliteNAIIS No Asbestos Identified in SampleNADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

* All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client :	ESG Bridgend
Site :	Dinahs Hollow
Report Number :	S14_4904

Note:	major	constituent	in	upper	case

Lab ID Number	Client ID	Description
CL/1421408	BH2-1 D 8 3.5	SAND
CL/1421409	BH2-2 D 4 1.7	SAND
CL/1421410	BH2-2 D 18 8.5	SAND
CL/1421411	BH2-4 D 4 1.7	CLAY
CL/1421412	BH2-4 D 8 3.5	CLAY
CL/1421413	BH2-4 D 14 6.5	SAND
CL/1421416	BH2-1 UT 13 6.0	SAND
CL/1421417	BH2-2 WS 12 5.0	SAND
CL/1421418	BH2-3 D 6 2.55	SAND
CL/1421419	BH2-5 D 4 1.7	SAND
CL/1421420	BH2-6 D 7 4.0	SAND
CL/1421421	BH2-6 D 13 7.0	SAND
CL/1421422	BH2-7 D 5 2.55	SAND
CL/1421423	BH2-7 D 10 5.0	SAND
CL/1421424	BH2-5 D 7.50	SAND
02	512 0 5 1100	
	1	1

ENCLOSURE E PHOTOGRAPHS

Core Photographs

Plates 1 to 21

Carried out for

Dorset County Council

Project No.

Carried out for

H4042-14A

Dorset County Council

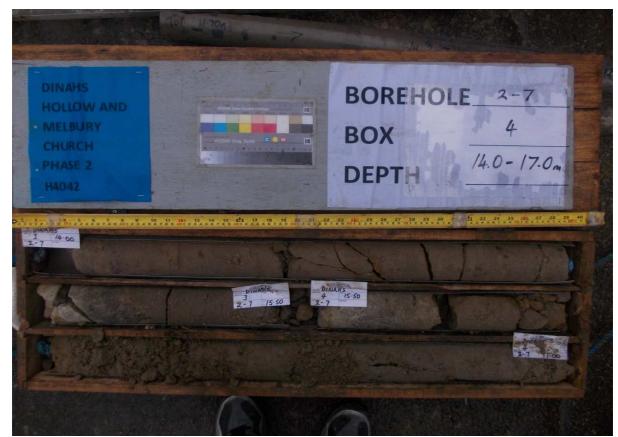
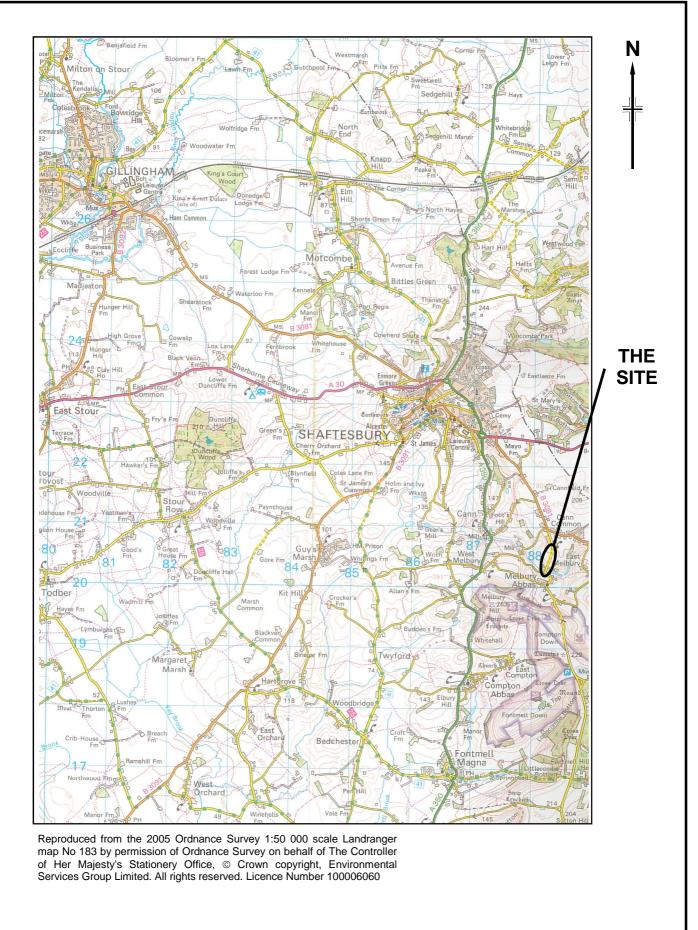
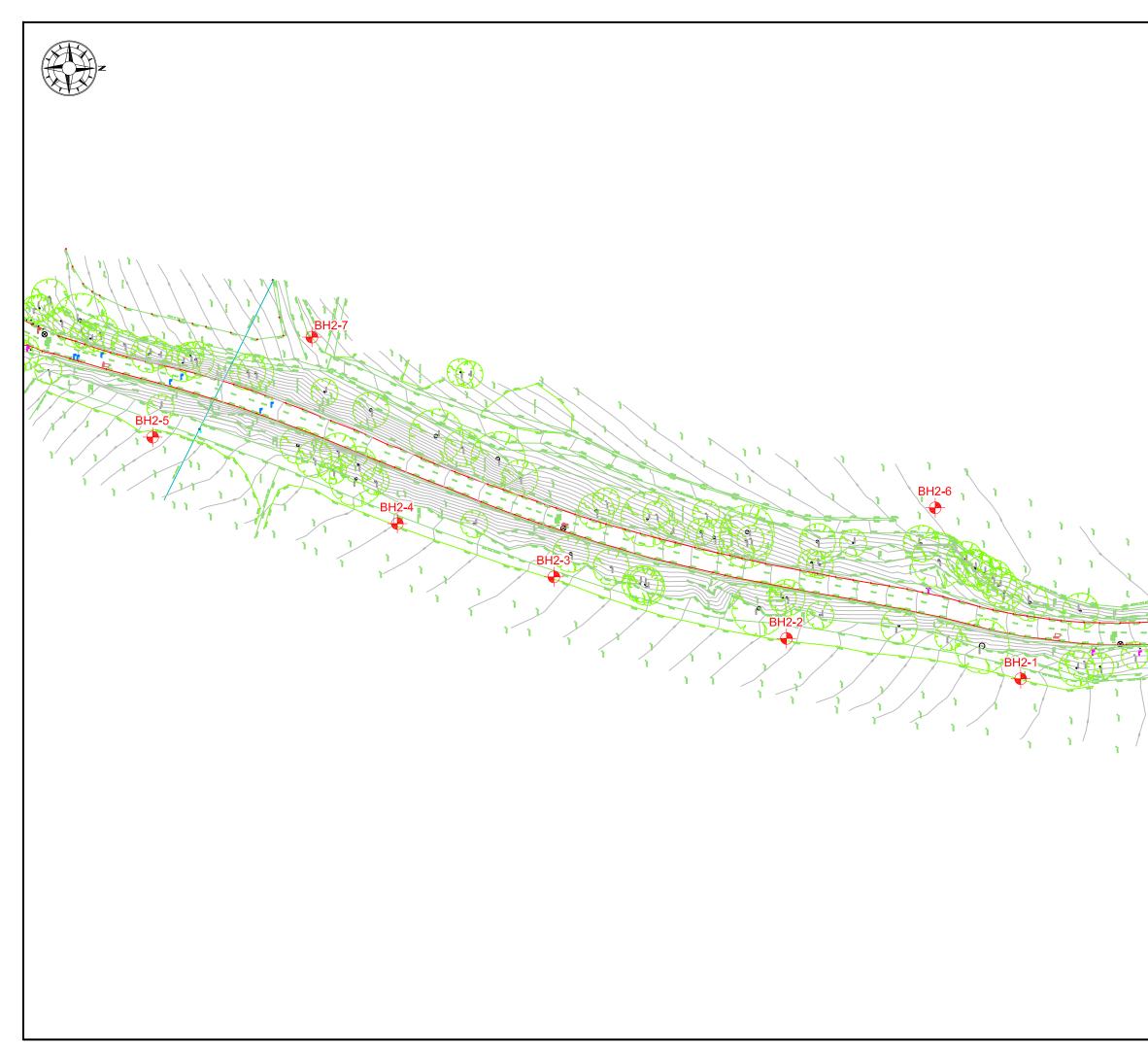


Plate 21: BH2-7 14.00 - 17.00m

Notes:	Project Project No. Carried out for	Dinah's Hollow, Melbury Abbas Phase 2 Ground Invesitgation H4042-14A Dorset County Council	Plates 21



ENCLOSURE F DRAWINGS


Site Location Plan Site Plan F1 F2

Site Location Plan

Notes: Scale 1:50 000	Project	Dinah's Hollow, Melbury Abbas	Figure	
	Project No. Carried out for	H4042-14A Dorset County Council	F1	

	GENERAL NOTES										
	 Reproduced from Dorset County Council 's Drawing No. BHP 001. Hole Locations to National Grid Co-ordinate Reference System. 										
	LEGEND TO SYMBOLS										
	🔶 Borehole Location										
	a 1 4 4 a a a										
	Scale: 1:1000 0 10m 20 30 40 50										
	x x	x	x	×	×						
		Date	Approv.	Date		ation Details					
	Rev Drawn I	Jate		ENDMENTS		ation Details	5				
h	Title										
1											
			SII	E PLA	N						
-	Project										
1	DINAHS										
1	PHASE	2 G	ROU	ND IN'	VES	ΠGA	ATION				
1	Client										
h											
	DOF	RSE	тсс	UNTY	CO	UNC	IL				
	ESG (SP										
	Environmental Scientifics Group										
	Date 22/09/201	4	Drawn	BS BS	/	Approv. I	^{By} AP				
	Sheet Size	Scale)			Proj	ect No				
	A3		1:1000			Н4	042-14A				
	Drawing No						Rev				
			F2				0				